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Abstract
This thesis considers stabilization of constant power loads (CPLs) fed by a dc
power source through an input filter, using model predictive control (MPC).
Train propulsion systems generally utilize electrical motors whose output torque
is tightly regulated by power converters. Often, these systems behave as CPLs.
When a CPL is coupled with an input filter it can lead to a stability prob-
lem known as the negative impedance instability problem. Current state of
the art regulators deal with this problem using classical frequency domain
optimization-based controllers, such asH∞. This thesis instead proposes a lin-
ear parameter-varying model predictive controller (LPV-MPC). This advanced
control method solves the negative impedance instability problem while also
being capable of explicitly addressing signal constraints, which often exist in
power converter applications. The regulator is evaluated in MATLAB/Simulink
as well as in a software-in-the-loop (SIL) simulator. It has furthermore been
realized in a real-time hardware-in-the-loop (HIL) simulator and tested in a
power laboratory. Theoretical results show improved performance over con-
ventional H∞ controllers, in terms of damping and control input use, under
certain operating conditions where the control input is limited. The results
can be used as a benchmark of theoretical performance limits for design of
other regulators.
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Sammanfattning
Detta examensarbete avhandlar stabilisering av konstanta effektlaster (CPL)
matade med dc-effekt via ett ingångfilter, med hjälp av modellprediktiv re-
glering (MPC). Drivsystem i tåg använder vanligen elektriska motorer vars
moment regleras hårt utav effektomriktare. Dessa system beter sig ofta som
en CPL. När en CPL sammankopplas med ett ingångfilter kan det leda till ett
stabilitetsproblem känt som the negative impedance instability problem (ung.
negativ-impedans-instabilitetsproblemet). Dagens främsta regulatorer angri-
per detta problem genom att använda klassiska regulatorer baserade på optime-
ring i frekvensdomän, till exempel H∞. I detta examensarbete föreslås istället
en linjär parametervarierande modellprediktiv regulator (LPV-MPC). Denna
avancerade reglermetod löser stabilitetsproblemet och kan samtidigt hante-
ra signalbegränsningar explicit. Signalbegränsningar är något som ofta finns
i tillämpningar som involverar kraftomriktare. Regulatorn utvärderas i MAT-
LAB/Simulink samt i en mjukvarusimuleringsmiljö. Regulatorn har dessutom
förverkligats i en hårvarusimuleringsmiljö och testats i ett labb för kraftelekt-
ronik. Teoretiska resultat visar på förbättrad prestanda i jämförelse med kon-
ventionella H∞-regulatorer, vad gäller dämpning och användning av styrsig-
nal, i vissa arbetsfall när styrsignalen är begränsad. Resultaten kan användas
som ett riktmärke som visar på gränser för teoretisk prestanda vid design av
andra regulatorer.
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Chapter 1

Introduction

This master thesis concerns stabilization and damping of a train propulsion
system, using model predictive control (MPC). The MPC will be evaluated on
systems which correspond to real train applications. In Figure 1.1 pictures of
the considered train applications can be seen. Figure 1.1 (a) shows a picture
of a London Central Line train whose propulsion system will mainly be con-
sidered in this thesis. Figure 1.1 (b) is a photo of a Changzhou metro train.
The propulsion system of this train will be considered later in the thesis, when
real-time implementation is investigated.

This chapter starts off by giving an overview of the propulsion system in
electric trains. It then explains why stabilization is needed. Next, we broaden
the perspective to other systems which exhibit similar behavior to what we
see in train propulsion systems. From there follows an overview of different
ways in which the stabilization problem has been addressed previously. We
will finally explain why we think it is relevant to investigate the use of MPC;
We list the objectives which were put up for this thesis, as well as the limit of
scope.

1.1 Topology of Propulsion System in Elec-
tric Trains

The power to many electric trains is fed from a dc line, while the systems in
the train, such as the motors, are ac power systems. Therefore, the power must
be converted through a dc/ac converter, before it can be supplied to the motors
and provide traction for the train. Figure 1.2 shows a computer render of a
Bombardier converter module which converts dc to ac. The transistors, which

1
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(a) (b)

Figure 1.1: (a) Photo of London Central Line train in operation, from Bom-
bardier Transportation [1]. (b) Photo of Changzhou metro train in operation,
by SCJiang [2].

Controller
Capacitor Power transistors and GDUs

3-phase output

Figure 1.2: Computer render of a TC 1500 Bombardier converter module with
open side cover, from Bombardier Transportation [3]. The large blue box, be-
hind the white plates, in the top of the module, is the input capacitor. The green
circuit boards are the GDUs for the transistor switches, which are the dark grey
plates underneath the GDUs. The brains of the converter, the controller board,
is located inside the large grey box to the left of the module. The copper bars
which lead to the right are the connections for the three-phase motor load.
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Figure 1.3: Photo of Bombardier permanent magnet motor, from Bombardier
Transportation [4]. On the right side of the motor the connections for the
three phases are visible. In the center, facing south west, is the connection to
the rotor.

DC/AC
Converter

3-Phase
Load

///

Input Filter

+

−
E

Figure 1.4: A three phase load is supplied by a dc/ac power converter. The
power converter is connected to a dc supply voltage, E, via an input filter.
This type of system often experiences stability issues related to the negative
impedance problem at higher power loads.
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do the switching in the converter, are the dark grey plates along the bottom
part of the module. On top of them, green circuit boards can be seen. These
are gate drive units (GDUs), which give the signals to turn off or turn on the
transistors. The GDUs are controlled by a controller board which is located
inside the large grey box in the leftmost part of the module. The copper bars
leading to the right of the module is the three-phase output which goes to the
motors. A photo of such a motor can be seen in Figure 1.3.

A simplified model of a dc fed train propulsion system can be seen in Fig-
ure 1.4, where the block labeled 3-Phase Load, in the context of train propul-
sion, could be one or several ac motors. The input filter forms the connection
between the dc voltage source and the converter module. It acts as a filter
between the environment outside the train (the power lines) and the electron-
ics inside. The capacitor is placed on the input of the converter in order to
keep the voltage to the converter steady. The inductor is placed on the input
to attenuate disturbances. The input capacitor can be seen in the picture of the
converter module (Figure 1.2); it is the large blue box in the top part of the
module. The line inductor of the input filter is located outside the converter
module. The resistor in Figure 1.4 models the resistance which exists in the
inductor winding and in the wires connecting the voltage source to the train.
It is thus not an actual component in the circuit of the real propulsion system.

1.2 Problem Description
As mentioned above, the power supplied to the train motor is fed via a dc/ac
power converter. The motor power is tightly regulated and is ultimately de-
termined by the torque demanded by the train operator. The control objective
of the converter is hence to provide a given motor torque, or more generally,
a fixed voltage waveform on the load side, regardless of disturbances such as
voltage fluctuations in the input filter.

When the control system in the converter is effective at following a given
torque reference, this translates into it being effective at keeping the power
throughout the converter close to the reference, and hence independent of the
input voltage to the converter. This independence between the input voltage
and the output power allows us to model the converter-load subsystem as a
constant power load (CPL) [5] (see Figure 2.1). The term ”constant” is an
unfortunate wording as the power reference certainly may vary over time, but
independently from the voltage from the input filter. This is an approximation
of the true system which assumes perfect torque reference following of the mo-
tor. However, we do not have perfect reference following. For example, it takes
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some time for the motor to respond to a change in reference. Furthermore, in
reality, the output power of the converter is not completely independent of the
input voltage. In many cases, however, the CPL approximation holds well, at
least in a certain frequency interval.

Approximating the system as a CPL means that we model the converter-
load subsystem as a non-linear component which draws current, id (see Figure
2.1) which is inversely proportional to the voltage across the component. For
any electrical component it has to be true that the total power consumption of
the component is equal to the voltage over it times the current through it. In
a CPL the power appears constant, or rather independent of voltage, from the
perspective of the input filter. This means that in a small signal perspective
the current into the CPL is inversely proportional to the voltage over it. We
know that for a resistor the relationship is the opposite; the current through
the resistor is proportional to the voltage over it. The inverse relationship be-
tween the current and the voltage thus has the effect that the CPL will exhibit
negative incremental resistance in the small signal perspective. This behavior,
known as the negative impedance instability problem, degrades the stability
margin of the feeder system [6]. The input filter is typically already poorly
damped, in order to minimize power losses and to save space and cost [6, 7].
The CPL therefore tends to destabilize the input filter, especially for power
draws above a certain threshold, and stabilization is required to prevent this
from happening. The negative impedance problem is well known in the liter-
ature and many possible solutions for stabilizing a CPL with a poorly damped
input filter exist [7, 8, 9, 10]. Common for most of them is that they modify the
input impedance of the CPL actively in order to keep the closed loop system
stable and well damped. Active stabilization is often achieved by introducing a
control law which modifies the power draw of the CPL. By making changes to
the power draw, around the reference point, the relationship between the volt-
age over the CPL and the current into the CPL is changed, which modifies the
input impedance. With a correctly designed control law the input impedance
is modified in such a way that stability is maintained even for operating condi-
tions where the system normally would be unstable. However, this stabiliza-
tion method introduces a trade-off between tracking the reference power and
stabilizing the system, since stabilization introduces power disturbances which
affect the reference tracking.

The method which is currently in use at Bombardier for stabilization of
the input filter and converter system inside their dc-fed trains is based on H∞
optimal control theory and uses the idea of a modification of the power draw of
the CPL, as described above. As an alternative, in this thesis, we will consider
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how the negative impedance problem can be treated using an advanced control
method known as model predictive control.

1.3 Prevalence of Negative Instability Prob-
lem

The negative impedance problem is not unique to the propulsion systems of
electric trains. The same stability problem often appears in electrical systems
where there are converters which one wants to regulate tightly, and hence ex-
hibit CPL behavior. Singh et. al. [6] mentions that similar systems can be
found in spacecraft, aircraft and electric vehicles, among many others. Tightly
regulated converters are also prevalent in electric grids which use renewable
energy sources, such as wind power and solar power plants. Typical for these
systems is that the grid consists of many energy-generating components which
often generate dc power. The power thus must be converted to ac before it can
be connected to the larger transmission network. With the desire to decrease
the size of components and to increase the efficiency of these systems comes
the problem that the systems become less damped. Active stabilization of these
systems therefore becomes an important task, and new insight into how that
can be done efficiently has the potential to be beneficial to a variety of power
converter applications.

1.4 Reason of Investigating Model Predictive
Control

In most traditional control methods, as well as in H∞ optimal control theory,
there is no explicit way of defining signal limitations. This leads to unwanted
behavior when limits do exist, i.e., excessive input and/or output values in the
system which one want to control. Excessive inputs are often handled with a
simple saturation of the signal, but excessive outputs are difficult to handle if
the constraints are not explicitly accounted for in the control problem. There-
fore it is common that systems are detuned and operated with a significant
margin to the constraints, usually with a cost in terms of lost performance or
efficiency. Using MPC, which can take both system input and system output
constraints into consideration, such margins can be made smaller and hence
one gets performance improvements. In the context of train propulsion sys-
tems there are output constraints in terms of current ratings on the motors and
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the electronics. There are also input power constraints for the same reasons.
Another reason for limiting power modification is that torque jerks stresses the
mechanical systems in the train and can also affect passenger comfort expe-
rience. Being able to handle these constraints properly could mean that the
propulsion system would be more energy efficient, while also being a more
comfortable experience for the passenger.

For this reason, this master thesis has investigated the use of MPC for sta-
bilization and damping of CPL with input filter. MPC is a control method
which solves an optimization problem online. In MPC it is possible to directly
include signal limitations into the optimization problem. The method has been
used for a long time in industries which deal with systems with slow dynamics,
such as chemical plants. In more recent years however, with advancements in
computational power and with the maturity of the theory of MPC itself, it has
proven useful in other applications as well, such as the area of power electron-
ics. In this master thesis an MPC regulator has been designed for stabilization
and damping of the input filter and CPL system. It has been implemented and
tested on the motor control systems at Bombardier Transportation in Västerås,
Sweden. The performance of the controller has been evaluated against per-
formance measures which are presented in Chapter 2.5. These are the same
performance measures which were used in [7] to evaluate the controller which
Bombardier already uses. In the next chapter we give a more detailed back-
ground to the stabilization problem, as well as the theory behind MPC and the
optimal control theory framework.

1.5 Objectives
We will here list the main objectives of the thesis, which are to

• investigate the feasibility of MPC for stabilization of a CPL connected
to a dc power source via an input filter.

• investigate the impact of explicit knowledge of control constraints on
performance when such control constraints are present

• implement the MPC regulator in a real-time environment to show its
feasibility and study its usefulness in control of power converters.

1.6 Limit of Scope
The scope of the thesis has been limited to
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• studying solutions where the MPC optimization problem is solved on-
line. See Chapter 2.9.3 for an alternative.

• studying the CPL model for stabilization of converter systems. Mod-
elling of extra system dynamics have not been considered.

• studying MPC regulators with linear system models and quadratic cost
functions.



Chapter 2

Background

This chapter begins by mathematically modeling the system which was in-
troduced in Chapter 1. The stability problems which exist with the system are
then explained in detail. This is done in Section 2.2 and 2.3. After that, in Sec-
tion 2.4, a number of ways to address the instability problem are described. In
Section 2.5 we introduce performance specifications which are relevant when
evaluating how good a solution to the problem is. In Section 2.6 an introduc-
tion to frequency domain optimal control is given in order to explain the state
of the art regulator from Section 2.7. Then in Section 2.8 follows a section
describing how stabilization can be done using a Linear Quadratic Regulator
(LQR). This will be used to connect the frequency domain methods to time do-
main stabilization methods. After that, in Section 2.9, comes an introduction
to MPC. We will see how it relates to LQR and there will also be an overview
of a few variants of MPC which are relevant to power systems applications.

2.1 Notation
We useAH to denote the Hermitian transpose of the matrixAwhere Hermitian
transpose is defined by

AH = (Ā)> = ¯(A>) (2.1)

Ā is the matrix where each entry of A is replaced by its complex conjugate.
We use tr(M) to denote the trace of the matrix M , which is the sum of the
diagonal elements of M . We use A � 0 to denote that A is positive definite.
Similarly, A � means that A is positive semi-definite.

E[·] is used as the expectation operator.
In discrete-time systems we use x(k) as a shorthand for x(kTs), that is,

9
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the value of the continuous-time signal x(t) at sample k, sampled with sample
period Ts.

2.2 Modeling of Converter and Load
As introduced in Chapter 1, the propulsion system of an electric train can be
modeled as CPL connected via an input filter to a dc power source. Assuming
an RLC filter as input filter the system can be modeled according to Figure 2.1
where the converter and the load from Figure 1.4 has been combined into a
CPL. The dynamics of the RLC filter are described by the following differential
equations

di

dt
=

1

L
(−Ri− Ud + E)

dUd

dt
=

1

C
(i− id)

(2.2)

where L and R model the resistance and the inductance of the physical RLC
filter (a known impedance) as well as the impedance of the dc line. Electric
trains are powered through overhead lines, or from a third rail. This means that
as the train moves, the distance to the voltage source changes, and so also the
impedance described by R and L. The impedance may therefore vary in quite
a large range and any stabilization method must be robust towards changes in
these parameters. The capacitance C is the capacitance on the input of the
converter. The states are the current through the inductor i, and the voltage
over the capacitance, Ud. The voltage E is the line voltage from the dc feeder
line, and id is the current into the CPL.

The CPL is described by the following relation

id(t) =
P (t)

Ud(t)
(2.3)

whereP (t) is the total power draw from the load. This means, given a constant
power P , the current id, drawn by the load, will have to increase/decrease to
accommodate for a decrease/increase in Ud. Thus, the load acts like a nega-
tive impedance, in a small signal perspective. This is further seen if (2.3) is
linearized in terms of P and Ud

∆id(t) = (− P0

U2
d0

)︸ ︷︷ ︸
YCPL

∆Ud(t) +
1

Ud0

∆P (t) (2.4)
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+

−

E

R
i

L

C

id

CPL

+

−

Ud

Figure 2.1: RLC input filter connected to a CPL.

where Ud0 and P0 is the input filter voltage and the total power draw of the
CPL at the equilibrium, and ∆Ud(t) = Ud(t) − Ud0, ∆P (t) = P (t) − P0

denote deviations from the equilibrium. We can now clearly see the small
signal negative impedance relation between Ud and id from the fact that the
admittance YCPL is negative for operating points where P0 > 0.

2.3 The Negative Impedance Stability Prob-
lem

Because of the negative impedance effect, there exists a power load when the
CPL destabilizes the closed loop system formed by the CPL and the RLC filter.
This power limit can be determined analytically. From basic control theory it
is known that the stability of a system can be studied by means of the poles of
the system’s transfer functions. If any pole is located in the the right half of
the complex plane the system will be unstable.

Let us begin by writing the transfer functions from the excitation signals
E and P to the states Ud and i. Let us begin with Ud. Laplace transformation
of (2.2) and elimination of i yields

Ud(s) = − (Ls+R)ω2
0

s2 + 2ζω0s+ ω2
0︸ ︷︷ ︸

ZDC

id(s) +
ω2
0

s2 + 2ζω0s+ ω2
0︸ ︷︷ ︸

GE

E(s) (2.5)

where the natural frequency ω0 and the damping factor ζ are defined as

ω0 :=
1√
LC

, ζ :=
R

2

√
C

L
(2.6)

The transfer function ZDC is the output impedance of the input filter and GE

is the filter transfer function from the input side. From now on let Ud, i, E and
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P denote deviations from an equilibrium which the equation (2.3) has been
linearized around. Using the linearized relationship (2.4) in (2.5) we can then
write Ud in terms of E and P

Ud =ZDC(YCPLUd +
1

U0

P ) +GEE(s)

⇒ Ud =
GE

1 + ZDCYCPL

E − ZDC

1 + ZDCYCPL

P

Ud0

(2.7)

Similarly, we can write the current i, in Laplace domain, as a function of E
and P

i = YinE +GEid = YinE +GE(GEE − Ud) =

=

(
Yin +

G2
e

ZDC

)
E − G2

E

ZDC

(
GE

1 + ZDCYCPL

E − ZDC

1 + ZDCYCPL

P

Ud0

)
=

=

(
Yin +

G2
E

ZDC

(
1− 1

1 + ZDCYCPL

))
E +

GE

1 + ZDCYCPL

P

Ud0

(2.8)

where the transfer function, Yin, from line voltage E to line current i is given
by

Yin =
s/L

s2 + 2ζω0s+ ω2
0

(2.9)

If we study the transfer functions GE , ZDC in (2.5) and Yin from (2.9) we see
that they all have the same denominator and thus the same poles. The poles
are given by

s = −ζω0 ±
√

(ζω0)2 − ω2
0 = −ζω0 ± ω0

√
ζ2 − 1 (2.10)

For all physical RLC filters R, L and C are positive, and hence also ω0 and ζ .
Therefore, the roots of 2.10 must have negative real part and be located in the
left half of the complex plane. Thus, all of these transfer functions are stable.
ZDC appears in the denominator of (2.8), but as can be seen in (2.5) its zero
is in the left half plane and cannot lead to instability. Instability of (2.7) and
(2.8) can hence only originate from the factor 1/(1+ZDCYCPL)which appears
when we connect the CPL to input filter. The stability limit is determined by
the poles of

1

1 + ZDCYCPL

=
s2 + 2ζω0s+ ω2

0

s2 +
(
2ζω0 − ω2

0L
P0

U2
d0

)
s+ ω2

0

(
1−R P0

U2
d0

) (2.11)
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where instability occurs if at least one of the poles of (2.11) is in the right half
of the complex plane. We will now study (2.11) to see when instability occurs.
Let us define the following two expressions

ωs :=ω0

√
1−R

P0

U2
d0

(2.12)

ζs :=
ζ√

1−R P0

U2
d0

(
1− ω0L

2ζ

P0

U2
d0

)
(2.13)

We can then write the denominator of (2.11) as

s2 + 2ζsωss+ ω2
s (2.14)

The polynomial (2.14) will have roots in the right half plane if the damping
factor ζs is negative, which happens when

ω0L

2ζ

P0

U2
d0

≥ 1 (2.15)

which can also be written as

P0 ≥
2ζ

ω0L
U2
d0 =

RC

L
U2
d0 (2.16)

This relation sets a limit on the possible power draw from the system. It is
fully determined by the filter parameters R, L and C, as well as the input filter
voltage Ud. We can write the equality relation for the limit as

Plim =
RC

L
U2
d0 (2.17)

where Plim denotes the power limit for the given input filter, at the operating
point Ud0. The system is stable for all power draws smaller than Plim and
unstable for all power draws larger than Plim.

2.3.1 Stability in terms of Nyquist Stability Criterion
As we have already seen, stability is determined by the poles of (2.11). Ac-
cording to the Nyquist stability criterion we can equivalently study the zeros
the loop gain, namely

LDC = YCPLZDC (2.18)

The simplified Nyquist stability criterion states that the Nyquist diagram of
the loop gain LDC cannot encircle the point (−1, 0) in the complex plane. If it
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Figure 2.2: (a) Nyquist diagram for the loop gain LDC for the CLT applica-
tion, without any stabilization. The operating voltage , Ud0, is 630 V and the
operating power, P0, is 300 kW. The value of the natural frequency in the dia-
gram is marked in red. The point (−1, 0) is also marked with a red cross. (b)
Magnitude plot of the output impedance, ZDC , of the input filter. The natural
frequency of the filter is marked with a vertical gray line.

does encircle the point (−1, 0) the system is unstable. The output impedance
of the input filter, described by the transfer function ZDC is a stable transfer
function, as has already been noted. Since the input filter is poorly damped it
does however have a large resonance peak. This can be seen in Figure 2.2 (b).
When multiplied with the admittance YCPL it is phase shifted 180°, if P0 > 0.
This can cause instability, if the magnitude of YCPL is too large. In Figure
2.2 (a) the Nyquist diagram of (2.18) has been plotted. We see that the point
(−1, 0) is encircled, and the system is unstable. To stabilize the system can be
interpreted as rotating the Nyquist curve of the loop gain so that it no longer
encircles the point (−1, 0). This is done by modifying the admittance YCPL.

2.3.2 Verifying the Theoretical Stability Limit
To verify how equality (2.17) holds we can simulate the response of the system
to a small step (here 1 V) in line voltage E while operating at different power
draws. The parameter values in the simulations are according to Table 5.2.
With these parameters (2.17) says that the stability limit is 44.5 kW. In Figure
2.3 we can see the step response of the system for three different power draws.
First 49 kW which is 10 % above the limit, then 44.5 kW which is equal to
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Figure 2.3: Step response of a CPL connected to an input filter without stabi-
lization for three different operating points.

the limit, and finally 40.1 kW which is 10 % below the limit. The first step
response shows an increasing amplitude, the second a constant amplitude and
the third a decreasing amplitude, indicating that the system is unstable in the
first case, conditionally unstable in the second case and stable in the third case.
The result shows that the inequality (2.17) matches what we see in simulation.

Since the converter is meant to be operated at powers which might be 10
times higher than the stability limit, we realize that stabilization is necessary.

In the next section we will present some ways in which stability can be
achieved.

2.4 Stabilization Strategies
There are multiple ways in which to compensate for the negative impedance
effects of the CPL in order to stabilize the feeder system so that it can be used
for power loads above its natural power limit. When the feeder side of the
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system consists of passive components, as is the case with the system under
consideration, stabilization can generally be achieved in three different ways:
(1) Using passive damping, where passive components are added to the circuit;
or through active damping, where one can either achieve the damping by (2)
adding an active component in parallel with the CPL - an auxiliary circuit - or
(3) modify the CPL input impedance directly. These methods will be reviewed
in the following subsections.

2.4.1 Passive Damping
One way to compensate for negative impedance effects caused by the CPL is
to increase the damping of the system by modifying the input filter. This can
be done by modifying the existing filter components or by adding new ones.
Resistances, capacitors and/or inductors are added in parallel to either the in-
ductor or the capacitor in the input filter. Figure 2.4 shows examples of how
these components can be placed. Adding passive components this way leads to
increased cost, weight and size of the system [6]. It also increases power losses,
which is often undesirable. The input filter is usually made poorly damped in
the first place to minimize such power losses. Such is the case in the train
application considered in this thesis. There are implementations of loss free
resistance, as mentioned in [6], which decreases the power losses. However,
these components still increase the cost and complexity of the system.

2.4.2 Active Damping
Active damping creates the effect of parallel passive components by modifying
the control structure in the active components of the system. However, since
the control laws are implemented in software, the structure is not limited to
that which can be realized with passive components. In the case where the
feeder consists of passive components, this means modifications of the control
structure of the load converter. It is also possible to add an auxiliary circuit in
parallel with the load subsystem to dampen the system.

Active Damping Using Auxiliary Circuit

When stabilizing with an auxiliary, a new circuit, usually a dc/dc converter,
is added in parallel with the load subsystem [5]. See Figure 2.5. This auxil-
iary circuit will actively modify its input impedance by changing how much
current, ia, it draws in order to stabilize the system. Meanwhile the load con-
verter may work independently. The advantage of this method is that it leaves
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Figure 2.4: Circuit diagram of the input filter with added passive dampers.

the feeder and the load systems untouched. It also decouples stabilization from
reference following, which is the overall objective of the load converter. How-
ever, like the passive damping approach it leads to increased cost and hardware
complexity.

Active Damping Using Load Converter Circuit

This method achieves damping by directly modifying the power draw of the
load converter in order to modify the input impedance of the CPL. This has an
advantage in that it doesn’t add any new components to the system. It therefore
doesn’t lead to increased cost and complexity in terms of components, in con-
trast to the previously presented methods. It does however lead to increased
complexity of the software which handles the switching of the load converter.
Another drawback is that the stability control loop can interfere with the over-
all control objective of making the power to the load follow the reference. By
implementing active damping with the load converter, we get conflicting con-
trol objectives. On the one hand we want CPL behavior, which comes with
perfect reference following. On the other hand, we need stability. Since the
active damping modifies the power draw, we can no longer deliver perfect CPL
behavior. We hence introduce a trade-off which does not exist with the other
solutions [5, 6]. In the next section we will elaborate more on these trade-offs.



18 CHAPTER 2. BACKGROUND

+

−

E

R L

C

id

CPL

+

−

Ud

Auxiliary
Circuit

ia

Figure 2.5: CPL with input filter, damped using auxiliary circuit.

2.5 Performance Specifications
We have already established that the main objective of any damping method is
to stabilize the input filter. Beyond this main objective there are other perfor-
mance specifications which we want to fulfill. In Mosskull’s article on CPL
stabilization [7] three performance specifications are introduced, which will
be used in this thesis as well. In particular, we would like any good damping
method to

1. give well damped system dynamics

2. limit interference with the overall control objective of following the
power reference

3. be robust towards modelling errors

The first specification represents the idea that we want not only a stable system,
but a system which is well damped. A well damped system is desirable in a
train application since the system will shut down in case of overvoltage or
undervoltage. Too high voltages can damage components and low voltages
results in high currents which also may damage components. It is furthermore
undesirable to have voltage ripple in the input filter since it can leak back onto
the dc feeder line where it can interfere with different signaling systems.

Secondly, we do not want the stabilizing power modification to interfere
too much with the objective of following the power reference set by the train
operator. For this reason, we want the stabilizing power to be zero in steady
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state. Let Pstab(t) be the stabilizing power modification. We want

lim
t→∞

Pstab(t) → 0 (2.19)

Furthermore, we want to minimize the magnitude of the power modification,
|Pstab|, as long as the other specifications are fulfilled.

Finally, we want the damping to be robust towards modelling errors, mean-
ing that stability should be maintained for variations of the passive compo-
nents, R, L andC, within a certain tolerance level. Furthermore, as mentioned
in Chapter 1 the CPL is an approximation of the true converter-load system dy-
namics. Even though we design the controller for a CPL, the real system is not
the same. The controller should therefore also be robust towards non-ideal
CPL dynamics, so that stability is maintained if the true converter-load system
doesn’t behave exactly like a CPL, i.e we do not exactly have

id(t) =
P (t)

Ud(t)

2.6 Introduction to Frequency Domain Opti-
mal Control

The controllers which are currently in use for stabilization of the input voltage
to the converters in the propulsion systems of the trains at Bombardier Trans-
portation are based on optimization in frequency domain. It is an H∞ type of
controller, which is derived by minimizing the ∞-norm of a certain function.
This section introduces the theory behind H∞, as well as H2, optimal control.

Consider the problem of designing a output feedback controller K(s) for
the system G(s), according to Figure 2.6. The system G(s) has input u and
output y which may be vectors, meaningG(s)may be a multiple input-multiple
output (MIMO) system. We then want to design the controller K(s) such that
certain criteria are met. These design criteria could be disturbance attenuation,
noise attenuation, faster system dynamics, reference following, etc. H∞ and
H2 optimal control provides a framework for finding K(s) which satisfies the
given conditions in an optimal sense (if such a K(s) exists). In the next two
subsections we will explain what theH2 norm and theH∞ are, before returning
to the question of finding the optimal controller.
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Figure 2.6: System G(s) with negative feedback controller K(s).
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Figure 2.7: General system model formulation for controller optimization.
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2.6.1 H2 Norm Minimization
Assume that we have a transfer function F (s), which for example could de-
scribe the transfer function from a disturbance signal to the output, or some
other relation which one would like to minimize. In H2 norm minimization,
the following system norm is used to define the norm of the dynamical system
F (s)

||F (s)||2 =
√

1

2π

∫ ∞

−∞

∑
i

σ2
i (F (jω))dω (2.20)

where σi(F (jω)) is the ith singular value of F (jω) (see Appendix A.1 for
information on singular values). The H2 norm of F (s) is thus the sum of the
singular values of F (s) evaluated at s = jω, integrated over all frequencies.
As noted by Skogestad and Postlethwaite in [11, Chapter 4.10], the H2 norm is
only defined for strictly proper dynamical systems, meaning that F (jω) → 0

as ω → ∞. This is true for all physical systems.
The singular values of F (jω) gives us information of the gain of F (jω)

at the frequency ω. In particular, for a matrix M , each singular value, σi(M),
corresponds to the gain of M in the input direction of vi, where vi are the
orthonormal input vectors of the singular value decomposition (SVD) of M.
That is

σi(M) = ||Mvi||2 =
||Mvi||2
||vi||2

(2.21)

When we minimize the H2 norm of a transfer function F (s) we minimize
the sum of squares of the singular values, across all frequencies. We are in a
sense minimizing the gain of F (s) for all possible input directions across all
frequencies. The average behavior means that this type of controller some-
times generate high peaks at certain narrow frequency ranges if it means it can
lower the gain at other frequencies sufficiently.

2.6.2 H∞ Norm Minimization
In H∞ norm minimization, the following system norm is used

||F (s)||∞ := max
ω

σ̄(G(jω)) (2.22)

where σ̄(F (jω)) is the largest singular value of F (jω). The H∞ norm is the
largest gain of the system F (s), considered across all frequencies ω. It is in
some sense the peak of the magnitude of the transfer function F (s).
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To minimize the H∞ norm of the transfer function F (s) therefore corre-
sponds to minimizing the peak of the largest singular value. Hence, we see the
difference betweenH2 andH∞. InH∞ we only consider the worst case and try
to improve that. In H2 we consider the gain in all input directions and for all
frequencies and try to minimize some sort of average. If F (s) is a sensitivity
function, describing the relationship between disturbance and output, H∞ op-
timization will make sure disturbances are attenuated in the direction in which
they have the worst impact. H2 on the other hand, will consider the gain in all
possible directions and attenuate disturbances in the directions which have the
best average improvement.

2.6.3 Defining the Optimization Problem
With an understanding of what H2- and H∞-norm minimization are we will
now return to the task of finding the optimal controller K(s) for the system
G(s). In [11, Chapter 9], Skogestad and Postlethwaite present a framework
for reformulating a feedback system like the one in Figure 2.6 onto the form
shown in Figure 2.7, which we can apply well known optimization algorithms
on, available for example in MATLAB’s Robust Control Toolbox. In [11],
more advanced control structures, which for example has higher degrees of
freedom or take model uncertainty into account are considered as well. For
the regulators which will be considered in this thesis, however, this simplified
structure suffices.

In Figure 2.7 the signal w represents what [11] calls exogenous inputs,
which could be reference signals, disturbances or noise. The signal z are the
exogenous outputs; signals which we want to minimize such as the control
error or the control inputs. The signal u are the control inputs, and v are the
sensed outputs - the inputs to the controller. The plant P is then the MIMO
transfer function from

[
w u

]> to
[
z v

]>. That is[
z

v

]
= P

[
w

u

]
(2.23)

Often P is partition as

P =

[
P11 P12

P21 P22

]
(2.24)

so that we can write the relation between the inputs and the outputs for each
output signal separately, in the following manner

z = P11w + P12u

v = P21w + P22u
(2.25)
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In P we may include weight functions on the exogenous inputs or the exoge-
nous outputs, which allow us to penalize a signal differently in different fre-
quency intervals. This allows is to shape the resulting controller K(s), and in
turn the qualities of the closed loop system.

The closed loop system F (P,K) (see Figure 2.7) is a function of the plant
P - which in turn is a function of the weights - and the controller K. The
closed loop system can be written in terms of the elements of the partitioned
P -system in the following way

F (P,K) = P11 + P12K(I − P22K)−1P21 (2.26)

The optimization problem then consists of finding the controller K such that
F (P,K) is minimized with respect to some system norm; either H2 or H∞.
If we optimize with respect to H2 we want to minimize (2.20) with F (P,K)

as the argument, and similarly if we want to optimize with respect to H∞ we
minimize (2.22) with F (P,K) as the argument.

Algorithms for minimizing ||F (P,K)||2 and ||F (P,K)||∞ have been given
by [12]. For the H2 case there exists a unique solution and the optimal con-
trollerK(s) is given by the solution to two algebraic Riccati equations. For the
case of H∞ it is possible to find all stabilizing controllers K(s) which satisfy

||F (P,K)||∞ < γ (2.27)

for some γ > γmin, where γmin is the minimum value of ||F (P,K)||∞. One
can then reduce γ iteratively, using for example the bisection method, until
a solution which is sufficiently close to the minimum has been found. The
method for finding a controller K(s) such that (2.27) is satisfied involves find-
ing the solution to two algebraic Riccati equations, similar to what is done in
the H2 norm case.

2.6.4 Relating H2 to Time Domain
The problem of minimizing the H2 norm of the system F (P,K) can be related
to minimization of a function in time domain, through Parseval’s theorem. If
we assume that the exogenous input w(t) is white noise with unit intensity, the
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expected power in the output signal z(t) is [11]

E

[
lim
T→∞

1

T

∫ T

0

z(t)>z(t)dt

]
(2.28)

= tr E
[
z(t)z(t)>

]
(2.29)

=
1

2π

∫ ∞

−∞
tr[F (jω)F (jω)H ]dω (2.30)

= ||F (P,K)||22 (2.31)

Here we have used a different definition of H2 norm, based on the trace of
a matrix, which is equivalent to (2.20). Between the second and the third
equality we have used Parseval’s theorem which relates the power of a signal in
frequency domain to the power in time domain. Thus we see that, minimizing
(2.28) is equivalent to minimizing ||F (P,K)||2.

2.7 State of the Art: An H∞ Controller
As mentioned in Section 2.6, the controllers which are used at Bombardier
for stabilization of the input filter in the train propulsion system have been
obtained using H∞ optimization. In this section we present what those con-
trollers are, and how they are derived. The derivations come from Mosskull in
[7], where explicit solutions to the controller which stabilizes the input filter
are found, both for H2- and H∞-norm optimization. This is done by letting
the control signal be a deviation from the desired power reference. The closed
loop transfer function from the reference power and the line voltage (exogenous
inputs) to the control signal (exogenous output) are then found. The optimal
controller is the controller which minimizes this transfer function.

2.7.1 The Optimization Problem for Negative Impedance
Problem

Consider again the model derived in Section 2.2, i.e., the model where we
considered a CPL connected to a dc-source via an input filter consisting of an
RLC filter. In Section 2.3 we showed that it became unstable for power draws
above a certain level, depending on the parameters of the input filter. Here we
will derive a stabilizing controller using the methods of optimal control which
were introduced in Section 2.6.
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Consider now a small power deviation Pstab from the desired power draw,
PCPL, such that the total power-draw from the CPL is

P (t) = PCPL(t) + Pstab(t) (2.32)

The power deviation Pstab will be the control signal which is modified to keep
stability. To express how the input filter and the CPL interacts with each other
we will now express the linearized current (2.4) with the addition of the power
deviation Pstab. It becomes

∆id(t) = (− P0

U2
d0

)︸ ︷︷ ︸
YCPL

∆Ud(t) +
1

Ud0

∆PCPL(t) + (−Pstab0

U2
d0

)︸ ︷︷ ︸
Ystab0

∆Ud(t) +
1

Ud0

Pstab(t)

(2.33)

where Ystab0 = 0 typically, since a steady state power modification is unde-
sirable. Just as in Section 2.3, let E, PCPL, i and Ud denote deviations from
an equilibrium which (2.33) has been linearized around. We can write the
transfer functions from E, PCPL and Pstab to the states i and Ud and get[

i

Ud

]
=

[(
Yin +

G2
E

ZDC

(
1− 1

1+ZDCYCPL

))
GE

1+ZDCYCPL

GE

1+ZDCYCPL
− ZDC

1+ZDCYCPL

][
E

(PCPL+Pstab)
Ud0

]
(2.34)

where we assumed Ystab0 = 0 according to the rationale above. GE and ZDC

are the same as in (2.5), and Yin is the same as (2.9).
We now want to design the control law. The most general control law

possible is the following

Pstab = Kp(s)Ud +KE(s)E +KT (s)PCPL (2.35)

where we have feedback control from the input filter voltage Ud and feed-
forward control from the reference power PCPL and the line voltage E. This
assumes that all of these three signals can be measured, which might not be
the case, but it is a common starting point used to investigate performance
limits. See Figure 2.8 for a block diagram of this general controller. In the
figure the block labeled Plant represents the input filter and CPL system. This
is a MIMO control system with inputs Pstab, PCPL and E, and output Ud. The
transfer functions Kp(s), KE(s) and KT (s) are controllers to be designed.
Assuming this general controller the closed loop system becomes[

i

Ud

]
=

[(
Yin +

G2
E

ZDC

(
1− Kpre

1+ZDCYDC

))
GEFpre

1+ZDCYDC

GEKpre

1+ZDCYDC
− ZDCFpre

1+ZDCYDC

] [
E

PCPL

Ud0

]
(2.36)
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Figure 2.8: General controller for feedback and feed-forward control of input
filter and CPL system. The block labeled Plant represents the input filter and
the CPL.

where

Kpre =1− ZDCKE

GEUd0

(2.37)

Fpre =1 +KT (2.38)

YDC =YCPL +
Kp

Ud0

(2.39)

Notice how the input admittance YDC , which was discussed in Section 2.3.1,
is modified in (2.39) through the introduction of the stabilizing control law.

Furthermore, we can write the transfer functions from line voltage devi-
ations E and power reference deviations PCPL to the control signal Pstab. It
is

−Pstab

Ud0

=

 GE

ZDC

(SDCKpre(1 + LDC0)− 1)︸ ︷︷ ︸
FE

FpreSDC(1 + LDC0)− 1︸ ︷︷ ︸
Fp

[
E

−PCPL

Ud0

]
(2.40)

where LDC0 = ZDCYCPL is the loop gain without control, and SDC = 1/(1+

ZDCYDC) is the sensitivity function. If we refer back to Figure 2.8 we see
that the transfer function from PCPL to Pstab, namely Fp, describes how vari-
ations in the power reference PCPL affects the power modification Pstab both
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through the feedback Kp(s) and through the feed forward KT (s). Similarly,
the transfer function from E to Pstab, FE , describes how line voltage varia-
tions E affects the power modification Pstab through the feedback Kp(s) and
through the feed-forward KE(s). Because of (2.32) the transfer function Fp

can be seen as the reference tracking error. This is a transfer function we
would like to minimize. The impact of variations in line voltage on the power
modification is also something which we would like to minimize, since one of
the performance specifications in Section 2.5 was to minimize use of power
modification, and we want a well damped system.

Instead of minimizingKp, KE andKT directly, the control problem can be
seen as the optimization problem of finding regulatorsSDC ,Kpre andFpre such
that the transfer functions FE and Fp are minimized in a system norm sense. In
[7] Mosskull shows that this optimization problem can be solved analytically
both for H2 and for H∞ optimization. In the following subsections the explicit
solutions to the optimization problem of minimizing

[
FE Fp

]
are given. In

the solutions below feed-forward from PCPL is not considered. This means
that KT (s) = 0 and thus Fpre = 1. Optimization is done assuming feedback
from the input filter voltage Ud and feed-forward from line voltage E. The
controller in Section 2.7.4 is what Bombardier’s conventional stabilization is
based upon and this is what we will use as a benchmark for our own regulator.

2.7.2 H2 Optimal Controller
For H2 optimization [7] shows that the explicit solution to the optimization
problem is the following controller

Kp(s)

Ud0

= 4ζω0C

(
P0

Plim

− 1

)
︸ ︷︷ ︸

Kstab,H2

s

s+ ωc

, KE(s) = −Kp(s) (2.41)

where ωc = R/L. This is a first order high-pass filter with a cut-off frequency
which only depends on the input filter parameters, scaled by a constant gain
dependent on the operating point. This controller does not use feed-forward
from PCPL. It does however require that both Ud and E are measured.
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2.7.3 H∞ Optimal Controller
For H∞ optimization [7] shows that the optimal control law consists of the
following two controllers

Kp(s)

Ud0

= 2ω0C

(
ζ

(
P0

Plim

− 1

)
+

9

8

)
︸ ︷︷ ︸

kstab,H∞

s

s+ ωc︸ ︷︷ ︸
B(s)

(2.42)

and
KE(s)

Ud0

= −k′
stab,H∞

ω′
0ζ

′
Bs

s2 + ω′
0ζ

′
Bs+ ω′2

0︸ ︷︷ ︸
B′(s)

(2.43)

The constant gain k′
stab,H∞ is defined as

k′
stab,H∞ =

p1 − ωc

p1 + ωc

kstab,H∞ (2.44)

and ω′
0 and ζ ′0 are defined as

ω′
0 =

√
ωcp1, ζ ′B =

p1 + ωc√
ωcp1

(2.45)

The design parameter p1 minimizes the peak value of KE(s) and is given by

p1
ω0

=

√
1 + ζ2

(
P0

Plim

− 1

)2

+ ζ

(
1 +

P0

Plim

)
(2.46)

The resulting controller Kp(s) consists of the same first order high-pass filter
found in (2.41) but with a different gain. The controller KE(s) is a second or-
der band-pass filter where the cut-off frequencies depend both on the operating
point and the input filter parameters.

2.7.4 Modified H∞ Optimal Controller
In practice, often only the input filter voltage Ud is measured and available for
feedback [7]. This means that KE(s) is set to zero. Without KE(s) the H∞
controller in 2.7.3 performs poorly when it comes to attenuating disturbances
in line voltage E. In [7] this issue is overcome by designing what they call a
suboptimal H∞ controller, from now on referred to as Hsub

∞ , which minimizes
the cost function FE when only Kp is available. The resulting controller is

Kp(s)

Ud0

=

(
2

(
1− 3

(3.7)2

)
ζ
P0

Plim

+
3

3.7

)√
C

L︸ ︷︷ ︸
Kstab,Hsub∞

B(s) (2.47)
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where
B(s) =

ω0ζBs

s2 + ω0ζBs+ ω2
0

(2.48)

and
ζB = 3.7 + 2ζ

P0

Plim

(2.49)

The resulting controller is a second order band-pass filter where both the filter
coefficients and the gain Kstab,Hsub

∞
depend on the operating point and the in-

put filter parameters. It is this controller which is implemented in the control
structure of Bombardier’s motor converter modules.

2.8 Linear Quadratic Gaussian Control
The controllers in Section 2.6 are designed from a frequency domain perspec-
tive. MPC, which will be the type of controller under investigation during
most of this thesis, is based on time domain optimization. Before approaching
MPC we will first, in this section, introduce a related control design method,
namely linear quadratic Gaussian (LQG) control. We will show what it is and
how it relates to H2 optimal control.

In LQG control linear system dynamics are assumed. If they are not linear
the system model can be linearized. It is also assumed that the system dynam-
ics are known. This means that in standard LQG, as described below, there
is no way to explicitly take model uncertainty into account. Finally, it is as-
sumed that the measurement noise and the disturbance noise are uncorrelated
zero-mean Gaussian stochastic processes with constant power spectral density.
This is almost never true, but it is a useful approximation which has turned out
to work pretty well in practice. Mathematically we have the following model

ẋ(t) = Ax(t) +Bu(t) + wd(t) (2.50)
y(t) = Cx(t) + wn(t) (2.51)

where wd(t) and wn(t) is disturbance noise and measurement noise with the
following properties

E
[
wd(t)wd(τ)

>] = Wδ(t− τ) (2.52)
E
[
wn(t)wn(τ)

>] = V δ(t− τ) (2.53)
E
[
wd(t)wn(τ)

>] = E
[
wn(t)wd(τ)

>] = 0 (2.54)

where δ(t − τ) is the Dirac delta function, and W and V are constant real-
valued matrices describing the spectral density of wd(t) and wn(t) respec-
tively.
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The LQG control problem is to find the optimal control u(t) which mini-
mizes the following quadratic cost function

J = E

[
lim
T→∞

1

T

∫ T

0

[x(t)>Qx(t) + u(t)>Ru(t)]dt

]
(2.55)

where Q = Q> � 0 and R = R> � 0 are constant weighting matrices. These
are design parameters which can be chosen to alter the importance of minimiz-
ing the states x(t) versus the control input u(t). Note that if one doesn’t want
to apply cost to the state x(t) per se, but on the output y(t) one can simply let
Q = C>Q′C for some weight matrix Q′ since

y(t)>Q′y(t) = (Cx(t))>Q′(Cx(t)) = x(t)>C>Q′Cx(t) (2.56)

If we consider the input filter and CPL system, which we will apply LQG to
later in Chapter 3, the state is naturally chosen as the line current i and the input
filter voltage Ud. The control input would be the power modification Pstab. So
if we want to have a well damped input filter voltage we would want to make the
elements of Q which are related to Ud large. In a similar way, we want to make
R large if we want to restrict use of control inputPstab. In the end, control input
usage and damping of states are conflicting objectives and making both Q and
R large doesn’t mean we achieve both control objectives perfectly. instead it is
the relative difference between Q and R which determines what we deem most
important: a well damped system or limited control usage. For this reason one
often lets one of these weight matrices, either R or Q be the identity matrix,
and only alters the other one. Since it is the relative weight difference between
R and Q which matters, this simplifies design, as it removes one degree of
freedom.

It is worth pointing out one outcome which comes from the fact that the
cost function 2.55 has quadratic cost terms. The cost function will make the
controller punish large deviations disproportionately compared to low devi-
ations. Small deviations however carry almost no cost. This can sometimes
lead to system dynamics which have small oscillations around the equilibrium,
since the controller doesn’t care much about damping those oscillations.

The solution to the LQG problem is given by the separation principle (see
Appendix A.2). It states that we can find the optimal controller by first as-
suming a deterministic system (no noise) and find the optimal state feedback
for that system. This is what is called the optimal linear quadratic regulator
(LQR). After that we can design a Kalman filter for optimal state estimation.

The optimal state feedback

u(t) = −Lx(t) (2.57)
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is given by the L which minimizes the deterministic cost function

Jdet =

∫ ∞

0

[x(t)>Qx(t) + u(t)>Ru(t)]dt (2.58)

and the solution is
L = R−1B>P (2.59)

where P = P> � 0 is the positive solution to the algebraic Riccati equation

A>P + PA− PBR−1B>P +Q = 0 (2.60)

The optimal state estimator is

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)) (2.61)

where K is chosen such that E
[
(x− x̂)>(x− x̂)

]
is minimized. The expres-

sion is minimized when
K = SC>V −1 (2.62)

where S = S> � is the solution to the algebraic Riccati equation

SA> + AS − SC>V −1CS +W = 0 (2.63)

and V and W are the spectral density matrices from (2.52) and (2.53).

2.8.1 Relating LQG and H2

Let us look back on (2.28). We restate it here again for convenience

E

[
lim
T→∞

1

T

∫ T

0

z(t)>z(t)dt

]
(2.64)

We see that the time domain expression for the H2 optimization problem looks
a lot like the LQG cost function 2.55. In fact, LQG is a special case of H2. If
we let the exogenous output z in the H2 problem be

z =

[
Q

1
2 0

0 R
1
2

][
x

u

]
(2.65)

and if we relate the stochastic inputs wd and wn to w in the following way[
wd

wn

]
=

[
W

1
2 0

0 V
1
2

]
w (2.66)

we see that we do in fact have the same problem formulation.
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2.9 Introduction to Model Predictive Control
Model predictive control (MPC) is a control method with its origins in the pro-
cess industry of the 1980s. Its capability of dealing with constrained MIMO
control systems made it attractive to the oil and chemical industries [13]. The
computational burden of MPC is relatively high, but since the processes in
these industries have slow dynamics, they were able to benefit from this ad-
vanced control method despite the limited computational power of computers
of the time. With improvements in computer technology, combined with the
development of custom algorithms, the computational speed of the MPC opti-
mization algorithms have greatly improved. It can therefore be used at sample
rates which are orders of magnitude faster, than when first introduced. For
this reason MPC has found its way into a much wider range of applications,
among which are control of power converters and drives [13], [14], which will
be explored in this thesis.

Common for all MPC approaches is that they use a model of the process
one wishes to control to predict the future trajectory of the process. By opti-
mizing over the input control sequence, it is possible to find the control input
which results in the best trajectory, for a finite number of samples into the fu-
ture (see Figure 2.10). Feedback is achieved by only applying the first input
in the computed control sequence and then repeating the optimization each
sample period, while also shifting the prediction horizon one sample forward.
This way the control input sequence is updated at each sample to account for
modelling errors or disturbances. Because of the way the horizon is shifted,
MPC is sometimes referred to as receding horizon control. In the optimization
problem it is also possible to include constraints on the input or on the internal
states of the model. This is quite useful if there for example exist known hard
limits on some of the states or if we want to keep the control inputs within
some bound. Being able to incorporate constraints directly into the problem
formulation is something which is not possible in control methods such as H∞
or LQG and is one of the biggest appeals of MPC. In the next subsection we
will describe the classical MPC problem formulation.
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Figure 2.9: Block diagram of a general MPC regulator structure.
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Figure 2.10: Illustration of the predicted trajectory and the outcome trajectory
under MPC.
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2.9.1 Classical Problem Formulation of Model Predic-
tive Control

In classical MPC a deterministic linear time invariant (LTI) discrete-time model
is used to model the process. It can be written as

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(2.67)

where x(k) is the internal state, u(k) is the control input, y(k) is the system
output i.e. the states which we can measure, and k is the discrete time index.

One nice property of the discrete-time LTI state space model is that the
state at time index k can be written as a linear combination of the initial state
x(0) and the control inputs by iterating the system equations (2.67) forward.
We have

x(1) =Ax(0) +Bu(0)

x(2) =Ax(1) +Bu(1) = A(Ax(0) +Bu(0)) +Bu(1) = A2x(0) + ABu(0) +Bu(1)

...

x(k) =Akx(0) +
k−1∑
i=0

AiBu(k − 1− i) (2.68)

We can write (2.68) on vector form as

x(k) = Akx(0) +
[
Ak−1B Ak−2B · · · AB B

]


u(0)

u(1)
...

u(k − 1)

 (2.69)

Using (2.69) we can predict what the state x(k) will be any finite number of
time steps into the future, given the initial state and the control input. With
(2.68) we can not only predict where the state will end up, but since we can
stop the summation at any arbitrary time step before k we can predict its entire
trajectory. This principle is what is used in MPC. Given that we know, or can
estimate, what the state is at time index k we try to find a sequence of control
inputs [u(0), u(1), · · · , u(k − 1)]> such that the trajectory of the state x, N
time steps into the future, is ”good” according to some measure of our choice.
In classical MPC we use a quadratic cost function to define what we consider
”good”. The cost function which often is used looks like

J =
N−1∑
k=0

(x(k)>Qx(k) + u(k)>Ru(k)) + x(N)>Qfx(N) (2.70)
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where Q � 0, R � 0 and Qf = Q>
f � 0 are weights on the state, control

input and the terminal state respectively, and N is the prediction horizon. The
first part of (2.70) is the cost of the first N time steps. It is essentially a finite
version of the infinite horizon LQR cost function (2.58). The second part is
a separate cost placed on the final state in the horizon added to represent the
cost from time N to infinity. This allows the MPC problem to be solved for a
limited horizon while still resembling the optimal solution to the infinite hori-
zon problem in the LQR problem (see (2.58)). In fact, without constraints the
classical MPC problem, using quadratic cost, is equivalent to the discrete-time
version of the LQR problem, if Qf is set to be the solution to the discrete-time
algebraic Riccati equation (see Appendix A.3). This is useful, because, de-
pending on how the weights Q and R are chosen, the best control input in the
short term, as determined by the summation part of cost function, could be
something which will drive the system further away from the equilibrium. By
adding a cost to the final state representing the cost for all future time, it be-
comes costly to move away from the equilibrium and we make sure the ”good”
solution moves towards the equilibrium instead. This principle of first com-
puting the cost for the first N terms and then adding a cost for all future time
is called the dual mode principle and is for example described by Kouvaritakis
and Cannon in [15, Chapter 2.3].

The last piece of the MPC problem formulation is to add the constraints.
The constraints are usually restricted to polyhedral sets (sets of linear inequal-
ities) in terms of the state and the control policy. This is done to make sure the
problem is convex, which makes it easier to find the solution. If we bring ev-
erything which has been introduced in this section together, the discrete-time
model, the cost function and the constraints, we get an optimization problem
on the form

minimize
N−1∑
i=0

(x>
i Qxi + u>

i Rui) + x>
NQfxN

subject to xi+1 = Axi +Bui i = 0, 1, · · · , N − 1

xi ∈ X , ui ∈ U i = 0, 1, · · · , N − 1

xN ∈ Xf , x0 = x(k)
(2.71)

where we have used the notation xi to denote the ith sample into the future
starting from sample x(k). This is clarified by the constraint x0 = x(k). The
polyhedral sets X and U constrain the state and the control policy respectively.
One sometimes adds a terminal set Xf which constrains the position of state
x at the end of the horizon. It is added to force the state at time step N into a
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set in which none of the constraints U and X are violated for all future time.
This means that linear state feedback will be the optimal control solution from
time N and forward, and that the choice of the solution to the LQR problem
is a valid choice for the final cost Qf .

Typical choices for the constraints X and U are

xmin ≤ xi ≤ xmax, i = 0, 1, · · · , N
umin ≤ ui ≤ umax, i = 0, 1, · · · , N − 1

|ui+1 − ui| ≤ ∆umax, i = 0, 1, · · · , N − 1

(2.72)

The optimization problem (2.71) is solved with the state at the current sample,
x(k), as initial state. The problem is a convex quadratic program (QP), for
which there are many efficient solvers [15].

Because of (2.69) we can substitute xi in (2.71) and write the state as
a linear combination of the initial state, the control input, and the system
matrices A and B. The solution to (2.71) is the optimal control sequence
U∗ = [u0, · · · , uN−1]

>, i.e the optimal control for N steps forward in time.
In MPC, only the first control input, u0, is applied. Then in the next sample
period the optimization problem is solved again, giving the optimal control
sequence N samples forward in time. As before only the first input in the se-
quence is realized. Hence, at each sample instance the optimization problem
is solved for the state x(k) which the system is currently in, the optimal con-
trol sequence U∗ given the cost function and the constraints is found, and the
first control input u0 is applied. This is the receding horizon principle, which
was explained before, and the way in which feedback is introduced in MPC.
Since the optimization problem is parameterized in the current state x(k), ac-
cording to (2.69) we can write the optimization problem (2.71) as a function
JMPC(x(k)). The control input at time index k is then given by

u(k) =

(
arg min

U

JMPC(x(k))

)
0

(2.73)

where (·)0 represents the first element in an array. The entire solution may
then be seen as a state feedback law, which however is difficult to express in
closed form.

Oftentimes the state x(k) is not directly available, but we have a situation
like in (2.67) where we measure y(k) - a linear combination of the states.
Therefore, the MPC has to be combined with some sort of state estimation.
The state estimation could for example be done using the Kalman filter, which
was explained in Section 2.8. We then get a closed loop system of the form
which is shown in Figure 2.9.
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Furthermore, note that the optimization problem (2.71) will find the con-
trol sequence which drives the state x(k) to zero. If one for example, as is
common, want the output y(k) to follow a reference r(k) instead one can sim-
ply define

e(k) = y(k)− r(k) = Cx(k)− r(k)

Then one can replace the cost on the state in the cost function with

e(k)>Q′e(k) = (Cx(k)− r(k))>Q′(Cx(k)− r(k))

similar to what was done in (2.56) to make the LQR cost be on the output
instead of the state.

In the next few subsections we present an overview of different ways in
which MPC has been implemented. The focus will primarily be on applica-
tions in power converters and drives.

2.9.2 Implementation Considerations for Online Opti-
mization of MPC

MPC methods which compute the control input online in each sample period,
are considered traditional MPC methods. The dynamics in electrical systems
are typically quite fast; at least compared to the slow chemical processes where
MPC originated. Making sure the MPC optimizer is fast enough can therefore
be a challenge. Special methods need to be employed to minimize the online
computation time. In this subsection we will therefore consider some ways in
which the online computation time can be decreased. The methods presented
here come from Wang and Boyd in [16]. We refer to that paper for a more
in-depth explanation of the methods.

Primal Barrier Interior-point Method

In the primal barrier interior-point method the inequality constraints of the
MPC problem are replaced by a so-called barrier term, which is added to the
cost function. This makes the problem solvable using Newton’s method. The
method is described in [16]. First the optimization problem (2.71) is rewritten
into a more compact form. This is done by defining an optimization variable
which is the combination of x and u

z =
[
uk xk+1 · · · uk+N−1 xi+N

]> ∈ RN×(m+n) (2.74)
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where n is the size of the state x and m is the size of the control input u. The
QP (2.71) is then

minimize z>Hz

subject to Pz ≤ h, Cz = b
(2.75)

where the definition of H , P , h, C and b may be found in Appendix A.4.
Next, the inequality constraints are replaced by a so called barrier term,

which is added to the cost function. We then get an approximation of the
original problem

minimize z>Hz + κφ(z)

subject to Cz = b
(2.76)

where κ > 0 is a tunable barrier parameter. The smaller the value of κ the bet-
ter the approximation will be. A small κ will however also make the problem
take more iterations to converge. The choice of κ in an MPC application is thus
a trade-off between solution accuracy and computational speed and the choice
will depend on the needs of the specific application. The function φ(z) is the
log barrier - a function which is associated with the inequality constraints. It
is defined as

φ(z) =
∑
j

− log(hj − p>j z) (2.77)

where pj is the jth row of P . When p>j z approaches hj , i.e., when we get close
to the constraint, the barrier function increases towards infinity. By adding this
to the cost and removing the constrains, any solution too close to the constraint
will have a really high cost and hence not be optimal in the approximate prob-
lem. Once the problem is on the form (2.76) it can, for example, be solved
with Newton’s method, which has quadratic convergence rate.

Infeasible Start Newton Method

Once a QP is on the form of (2.76) it can be solved with a so called infeasible
start Newton method, which is suggested in [16]. It consists of forming the
optimality conditions for (2.76) which are

rd = 2HzκP>d+ C>v = 0

rp = Cz − b = 0
(2.78)

where dj = 1/(hj − p>j z) and v is a variable associated with the equality
constraint. The Newton step then consists of solving the linear equations[

2HκP>diag(d)2P C>

C 0

] [
∆z

∆v

]
= −

[
rd
rp

]
(2.79)



CHAPTER 2. BACKGROUND 39

using an initial guess z0, v0. The approximate solution z̄, v̄ is updated in each
step according to z̄ := z̄ + s∆z and v̄ := v̄ + s∆v, where s ∈ (0, 1]. Before
the next Newton step the residual vector (rd, rp)> is updated by computing the
optimality conditions (2.78) with the current approximate solution. Once the
residuals are below a certain threshold which we define, we stop. The initial
guess, (z0, v0), may be infeasible, by violating the equality constraintsCz = b,
which is where the method gets its name from. The initial guess does however
need to satisfy the inequality constraints Pz < h or else the barrier function
(2.77) is undefined as it would involve taking the log of a negative number.

Improving Computation Speed of the Newton Step

The speed at which the system of equations (2.79) are solved can be greatly
improved by exploiting the structure of the problem. Namely that

2H + κP>diag(d)2P

is a block diagonal matrix. The cost of solving the system of equations using
LU decomposition (Gaussian elimination) is O(N3(n+m)3) flops. When the
system is known to have the aforementioned structure, a method called block
elimination can be used instead. Block elimination has at most computational
cost of O(N(n +m)3) flops for a problem with this structure [16]. The cost
thus goes from being cubic to linear in terms of the horizon. If the cost function
in the MPC optimization problem doesn’t include cross-terms, i.e terms which
depend both on the state x and the control input u, the complexity decreases
even further to be O(N(n3 + n2m)). This cost is linear in terms of both the
horizon N and the number of control inputs m. Thus, in time critical applica-
tions we are more limited in terms of which cost functions we can use. This
poses limitations on the choices we have when we want to describe the notion
of desired performance in the MPC framework. If computational speed is less
of a problem we could consider more complex cost functions which might bet-
ter reflect the desired performance. The way the MPC problem is formulated
in (2.7) there are no cross-terms in the cost function.

Warm start

Another way in which the online computational speed of the MPC problem
can be improved is by warm start. The number of iterations needed to find the
solution using Newton’s method decreases the closer the initial guess is to the
solution. In MPC we solve a QP at each sample and obtain a solution which
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is the optimal trajectory for that time. Let the computed trajectory at time step
k − 1 be

z∗ =
[
u∗
k−1 x∗

k · · · u∗
k+N−2 x∗

k+N−1

]> (2.80)

In the next time step, at k, it is reasonable to assume that the previous solution
is close to the new solution. Therefore, we can initialize the primal barrier
method at time step k with

z0 =
[
u∗
k x∗

k+1 · · · x∗
k+N−1 û x̂

]> (2.81)

namely the same trajectory as z∗ but shifted one timestep. The last two ele-
ments of the initial guess, û and x̂, can for example be chosen as the average
of all the control inputs and the average of all the state values in the rest of the
trajectory. This initial guess z0 is likely to be close to the optimal solution to
the QP, meaning the solver will converge quickly, after only a few iterations.
Furthermore, if z∗ satisfies the inequality constraints Pz < h so will z0, ex-
cept possibly at the first and last timesteps. For those two timesteps it is not
guaranteed that the inequality constraints will hold. The initial guess may then
be modified at these two timesteps in order to satisfy the constraints.

2.9.3 Explicit Model Predictive Control
An entirely different way of reducing the online computation time of MPC is to
move most of the computation offline. Explicit MPC is one way to do that. In
explicit MPC the optimization problem is parameterized in terms of the state
and the problem is then solved offline. If the cost function is quadratic, the
constraints linear inequalities, and the model is LTI, the resulting solution will
be a piece-wise linear function in terms of the state [17]. The state-space will
be partitioned into polyhedral regions such that the optimal control in each
region is a linear function in terms of the state. This means that if we want the
optimal control u∗ for some state x0, it is given by

u∗ = Kix0 (2.82)

where the feedback Ki will differ depending on where in the state-space x0 is
located. The polyhedral regions, where each feedback Ki is valid, are sepa-
rated by hyperplanes. The regions can be sorted into a binary tree, where, in
each node of the tree one evaluates which side of a hyper-plane the state lies.
This means that the problem of finding the optimal control is reduced to a bi-
nary search in each time step. Since binary search has complexity O(log2H),
where H is the number of hyper-planes dividing the state space, this method
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has the potential to be very fast, as long as the number of regions is manage-
able. One disadvantage with explicit MPC is that it requires more memory
than implicit solvers. If memory is limited, explicit MPC might not be an op-
tion if the number of regions is too large. According to [16] explicit MPC is
manageable when n ≤ 5,m ≤ 3, and N ≤ 12, where n is the number of
states, m number of inputs, and N the prediction horizon. This result is how-
ever from 2010 and could be considered somewhat dated. More recently, in
2017, [18] showed that explicit MPC is manageable on modern hardware with
a problem space of n = 10, u = 5, and N = 40. With a problem space of that
size the binary tree shouldn’t grow too large.

2.9.4 Finite Control Set Model Predictive Control
Finite control set MPC (FCS-MPC) is a variant of MPC which has been widely
investigated for use in power converter applications. See, for example [19,
20, 21, 22, 23]. FCS-MPC is a low level type of control where the discrete
nature of the power converter is taken into account and the MPC problem is
formulated in terms of the switches inside the converter. The most popular
method is called optimal switching vector MPC (OSV-MPC) [14]. This is
something which we looked at in this thesis. We decided not to implement it
since it didn’t fit into the existing control structure at Bombardier.

In this method we define a set S which is the set of all valid combinations
the transistors in the converter can be in (see Figure 2.11). Each element, Si, of
S is a vector of length three which represents which switch is open in each of
the legs in the converter circuit. For example S1 = (1, 0, 0). This means that
Sa, S̄b and S̄c are open and S̄a, Sb and Sc are closed. For a typical three-legged
dc/ac converter, as the one in Figure 2.11, there are 8 valid configurations for
the switches, since it must be true that one and only one switch per leg is open
at any given time. This means that |S| = 23 = 8. Each switch configuration
Si results in different voltages across the phases in the output filter. These
discrete voltage vectors can be seen as the control inputs to the system.

Thus, the control input isn’t part of a continuum as is normally the case in
MPC, but instead part of some discrete set S with a finite number of possible
states. The optimization problem then reduces into finding the best input volt-
age vector in the set, at each sample instance. If the set is small enough it can
be done by simply computing the cost of each possible option and picking the
best one. The computational complexity of FCS-MPC is O(|S|N) where |S|
is the size of the control set S, and N is the prediction horizon. We see that
the complexity grows exponentially with the prediction horizon. Meanwhile
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Figure 2.11: Converter from dc to three-phase ac with load and input RLC
filter.

the switching frequency of the converter transistors are typically in the order
of tens of kHz. For this reason, FCS-MPC generally can’t address long predic-
tion horizons and in most power electronics applications, prediction horizons
of length one is used. Furthermore, OSV-MPC will result in a variable switch-
ing frequency, unless constraints addressing this are added into the problem
formulation. There are alternative FCS-MPC methods such as optimal switch-
ing sequence MPC (OSS-MPC) that directly takes this into account. However,
OSS-MPC has greater computational cost than OSV-MPC [14].



Chapter 3

Linear Quadratic Regulator for
the Negative Impedance Prob-
lem

In this chapter we will show how the negative impedance problem can be ap-
proached using the LQG framework presented in Chapter 2.8. Assuming a
deterministic model, we will design the optimal full state feedback law.

3.1 LQR Controller Design
Consider again a CPL connected to a dc voltage source via a RLC filter which
was modeled in Chapter 2.2 and described by equations (2.2). They are re-
peated here

di

dt
=

1

L
(−Ri− Ud + E)

dUd

dt
=

1

C
(i− id)

Consider also the same linearization of the current id as was done in Chapter
2.7.1, namely (2.33), which is also also repeated here

∆id(t) = − P0

U2
d0

∆Ud(t) +
1

Ud0

∆PCPL(t) +
1

Ud0

Pstab(t)

where Ystab0 is set to zero. As before Pstab(t) is a power modification which is
used for stabilization. Using the equation for the linearized current the differ-
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ential equations (2.2) can be written on state space form

ẋ =

[
−R

L
− 1

L
1
C

P0

CU2
d0

]
︸ ︷︷ ︸

A

x+

[
0

− 1
C

]
︸ ︷︷ ︸

B

u+

[
1
L

0

0 − 1
C

] [
E

PCPL

Ud0

]
(3.1)

In (3.1) the state and control input are defined as

x =

[
∆i

∆Ud

]
, u = Pstab/Ud0 (3.2)

The state x is hence defined in terms of deviations from an equilibrium, around
which the equations have been linearized. More precisely

∆i = i− i0, ∆Ud = Ud − Ud0 (3.3)

where i0 and Ud0 is the line current and input filter voltage at the equilibrium
point. The two excitation signals, E and PCPL are not considered in the LQR
controller design, since it is designed in terms of the control input u and the
state x. We therefore disregard them for now so that we get a system on the
form

ẋ = Ax+Bu (3.4)

which we assume to be fully deterministic, meaning that we have full knowl-
edge of the state x.

The weights in the cost function (2.55), which is repeated here

Jdet =

∫ ∞

0

[x(t)>Qx(t) + u(t)>Ru(t)]dt

, are designed in order to meet the performance specifications listed in Chapter
2.5. First we add a weight qUd

reflecting that we would like to minimize ripple
in the voltage Ud. Secondly, we add a weight ru to the control input u to reflect
that we want to limit the use of control input. The weights for the cost function
(2.55) are thus

Q =

[
0 0

0 qUd

]
, R = ru (3.5)

where the values qUd
and ru can be adjusted in order to obtain desired closed

loop dynamics.
The feedback gain L is then given by solving the Riccati equation (2.60)

for the system matrices A and B as defined by (3.1) and the weights (3.5).
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3.2 Varying Operating Point
As we said before, the controller assumes that the input to it is given as devia-
tions from an equilibrium, or an operating point. To remove steady state bias,
the operating point has to move when reference changes are made in the line
voltage E and the power reference PCPL.

Furthermore, to have a model which is valid in each operating point, the
state space model is parameterized in terms of the operating point. See Chapter
4.3 for more details on how this is done.

The operating point can’t be changed too fast or else the system can become
unstable. One also cannot change the operating point too slowly, or the model
might not reflect the system well. To vary the operating point, we design a first
order low pass filter

F (s) =
1

τs+ 1
(3.6)

where τ is the time constant of the filter. We will filter the state vector (i(t), Ud(t))
>

through the filter F (s) and define the output of the filter to be (i0(t), Ud0(t))
>.

The input to the LQ regulator is then x(t) = (i(t), Ud(t))
> − (i0(t), Ud0(t))

>.



Chapter 4

Model Predictive Control for the
Negative Impedance Problem

The goal of this thesis was to investigate the use of MPC to stabilize the system
which consists of a CPL fed by a dc power source via an RLC filter. As we
have seen already, this system suffers from the negative impedance instability
problem. In this chapter we will show how the system can be stabilized using
an MPC regulator. We start off by designing a classic MPC regulator according
to the theory in Chapter 2.9. The design will build on the LQ regulator from
Chapter 3. Then, in Section 4.3 we extend the MPC model into a parameter-
varying design.

4.1 Problem Formulation in Model Predictive
Control Framework

As explained in Chapter 2.9, MPC relies on an discrete-time system model.
In order to design a MPC controller we will therefore have to come up with
a discrete-time model for the input filter and CPL system described by the
differential equations (2.2)

di

dt
=

1

L
(−Ri− Ud + E)

dUd

dt
=

1

C
(i− id)

and equation (2.3)

id(t) =
P (t)

Ud(t)
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describing the relationship between the input voltage and the input current to
the CPL. The equations were repeated here to aid the reader. To get a discrete-
time LTI model we will start with the continuous-time LTI model used in
Chapter 3. It is repeated here for simplicity. The model is

ẋ(t) = Acx(t) +Bcu(t) (4.1)

where

Ac =

[
−R

L
− 1

L
1
C

P0

CU2
d0

]
, Bc =

[
0

− 1
C

]
(4.2)

are the continuous-time state space matrices. The control input is Pstab(t)/Ud0

and the state is x(t) =
[
∆i(t) ∆Ud(t)

]>, where ∆i(t) and ∆Ud(t) are de-
fined as deviation variables from an equilibrium according to (3.3).

Using zero order hold sampling the system can be transformed to a discrete-
time LTI system on the form (2.67)

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

where the discrete-time system matrices are defined as

A = exp(AcTs), B =

∫ Ts

0

exp(Acs)Bcds (4.3)

where Ac and Bc are the continuous-time system matrices (4.2), Ts is the sam-
pling period and exp(·) is the exponential function.

The MPC cost function is defined according to (2.70)

J =
N−1∑
k=0

(x(k)>Qx(k) + u(k)>Ru(k)) + x(N)>Qfx(N)

where we set Qf equal to the solution of the discrete-time algebraic Riccati
equation (DARE)

Qf = A>QfA− A>QfB(R̄ +B>QfB)−1B>QfA+ Q̄ (4.4)

This choice of Qf corresponds to the cost of using the LQR from the final state
in the MPC time horizon, x(N), to infinity, as was explained in Chapter 2.9.1.
The weight matrices Q̄ and R̄ are the weights on the state and the control
input respectively for the infinite horizon LQR problem. These matrices do
not necessarily have to be the same as Q and R in (2.70). They thus become
two new tuning parameters which affect the MPC.
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For constraints we will assume control input constraints on the following
form

u ≤ uk ≤ u (4.5)

where u ≥ 0 and u < 0 are the upper and lower limits on u.
This concludes the nominal definition of the MPC controller. As is, the

controller assumes that both the states can be measured, which isn’t necessar-
ily the case. The controller is also linearized around one particular operat-
ing point defined by (P0, i0, Ud0) = (P0, P0/Ud0, Ud0), while the system itself
may operate at any operating point as the reference power or the line voltage
changes. These are problems which will be addressed in the next two sections.

4.2 State Estimation
The MPC in Section 4.1 assumes that both the line current i and the input
filter voltage Ud can be measured. However, we would like to have a controller
which works when only Ud is available for measurement, similar to the Hsub

∞
regulator in Chapter 2.7.4. For this reason, we will design an estimator for the
line current i. Based on the separation principle explained in Chapter 2.8, the
state estimator can be designed separately from the controller.

We will however not use a Kalman filter in this case for the estimation of
i. The reason for this is that the Kalman filter uses the linear state estimator
(2.61). Since we have a non-linear system we would prefer an estimator which
is independent of the operating point (P0, i0, Ud0). To estimate the current
independently of the operating point we can use the original, nonlinear system
equations (2.2). We know that in continuous time

i(t) = C
dUd(t)

dt
+

1

Ud(t)
(PCPL(t) + Pstab(t)) (4.6)

Since we can measure Ud and PCPL, and realize Pstab in our regulator, we
have access to sampled versions of these signals and from them we can form
a discrete-time version of the current i. We get

i(k) = CD(z)Ud(k) +
1

Ud(k)
(PCPL(k) + Pstab(k)) (4.7)

where
D(z) =

(
τz−1

1− (1− τ)z−1

)(
1− z−1

Ts

)
(4.8)

is a discrete-time filter which approximates the derivative of Ud. It is a back-
ward difference approximation of the derivative combined with a first order



CHAPTER 4. MODEL PREDICTIVE CONTROL FOR THE NEGATIVE
IMPEDANCE PROBLEM 49

low pass filter with cutoff frequency τ . The low pass filter is added to at-
tenuate high frequency noise, which in general is amplified by a derivative
filter. In (4.8) Ts is the sampling time and z denotes the variable of the Z-
transform. With the estimator (4.7) we can now get the state vector x(k) =[
∆i(k) ∆Ud(k)

]> by simply subtracting the operating point fromUd(k) (which
we measure) and i(k) (which we estimate) in the following manner

x(k) =

[
∆i(k)

∆Ud(k)

]
=

[
i(k)− i0

Ud(k)− Ud0

]
(4.9)

4.3 Linear Parameter-Varying Model
As mentioned in Section 4.1 we would like a controller which works for any
operating point. However, since the model (4.1) has been linearized it is only
valid around the point for which it has been linearized. To deal with this prob-
lem we will extend our controller to a linear parameter-varying MPC (LPV-
MPC), where the system matrices A and B are parameter-dependent and vary
over time according to the operating point.

4.3.1 Parameterized Model
The first step in switching to an LPV-MPC is to update the linear model based
on the operating point. Let

θ =
P0

U2
d0

(4.10)

be a scalar parameter defined by the operating power P0 and the operating
voltage Ud0. Consider the matrices of the continuous-time state space model
(4.2). The matrix Ac can be written as

Ac(θ) =

[
−R

L
− 1

L
1
C

θ
C

]
(4.11)

where only one element in the matrix depends on θ. The matrix Bc is constant
with respect to θ. In MPC, however, we use a discrete-time model. This small
difference unfortunately has the consequence that the elements of A and B

are affected more. Through the discretization (4.3) we see that a change in
Ac affects elements in both A and B. The exponential function furthermore
makes it difficult to find closed form expressions for these values.

Instead of finding closed form expressions for A(θ) and B(θ) we will find
the best piece-wise linear functions which fit computed values for A(θ) and
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B(θ). By computing (4.3) for a range of operating points θi, d units apart, the
discrete-time state-space matrices can be plotted as a function of θ. By assum-
ing that the functionsA(θ), B(θ) are linear in the interval

[
θi − d/2 θi + d/2

]
,

we can express the discrete-time system matrices A and B as piece-wise lin-
ear functions of θ. A piece-wise linear function was chosen since it is easy to
implement, while it also avoid jumps in the function, as we would have with a
piece-wise constant function for example. In Figure 4.1 and 4.2 the resulting
piece-wise constant functions are plotted along with the discrete data points
from which the function was created. We end up with one function for each
element in theA-matrix and theB-matrix. Using these functions, it is possible
to quickly compute the discrete-time linear system model for a given operating
point.

Since the terminal cost Qf depends on the discrete-time state-space ma-
trices through (4.4), it too will vary with the operating point. Solving the
DARE is a relatively costly and complicated operation. To speed up compu-
tation time, and to simplify implementation, this matrix is also parameterized
in θ. This is done by fixing the weight matrices Q and R and then solving the
DARE for different A- and B-matrices. The elements of Qf can be plotted as
functions of θ. This has been done in Figure 4.3. Using the same piece-wise
linear function as before, we can fit a function to the data which allows us to
compute an approximate terminal cost very fast.

The matrices A(θ), B(θ) and Qf (θ) are updated each sample period but
are assumed constant across the prediction horizon of the MPC optimizer.

4.3.2 Slowly varying the operating point
Just as with the LQ regulator in Chapter 3 we will need to vary the operating
point over time to remove steady state error. The operating point should not
be changed too fast or else the system might become unstable. We also do not
want the operating point to be varied too slowly. We might then operate with
a model which does not reflect the state of the true system. This can affect
performance, and in worst case lead to instability.

Like what was done for LQR, we will design a low pass filter through which
we will filter the signals PCPL(k), i(k) and Ud(k). The filter is designed as a
first order discrete-time low pass filter

F (ν) =
νz−1

1− (1− ν)z−1
(4.12)

where ν is normalized frequency. We then define the operating point P0(k),
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Figure 4.1: Piece-wise linear parametrization of the discrete-time state-space
matrix A(θ), where each plot (a)-(d) represent one element of A(θ). The red
cross marks are the computed middle points θi such that the function is con-
stant in the interval

[
θi − d/2 θi + d/2

]
, while the blue curves show the value

of A(θ).
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i0(k) and Ud0(k) as the filtered versions of PCPL(k), i(k) and Ud(k) respec-
tively. Furthermore, we let the parameter θ(k) = P0(k)/Ud0(k)

2.

4.3.3 Varying Input Limitations
Since our control input u in the MPC depends on the operating point - it is
defined as u = Pstab/Ud0 - the limits given to the MPC controller have to be
scaled with the operating voltage. This means that

u(k) =
P

Ud0(k)

u(k) =
P

Ud0(k)

(4.13)

where P and P are the upper and lower bounds on the power modification.
These limits could potentially vary with time as well. The upper and lower
limits in the reference frame of the MPC, u(k) and u(k), will be updated each
time step, but assumed constant across one prediction horizon in the optimiza-
tion problem. This was done to limit the scope to consider typical constraints
as listed in (2.72).

4.3.4 Optimization Problem Formulation for LPV-MPC
We will now present the updated QP for the LPV-MPC. It looks as follows

minimize
N−1∑
i=0

(
x>
i Qxi + u>

i Rui

)
+ x>

NQfxN

subject to xi+1 = Axi +Bui i = 0, 1, · · · , N − 1

u ≤ ui ≤ u i = 0, 1, · · · , N − 1

A = A(θk), B = B(θk), Qf = Qf (θk)

u = u(k), u = u(k), x0 = x(k)
(4.14)

where θk = θ(k). So to summarize, each time step k the QP (4.14) is solved
with state-space matrices A and B and terminal cost Qf fixed to the value of
which they had at time step k. The limits on the control inputs are also fixed for
the entire prediction horizon N . The solution to the QP is the optimal control
input sequence N samples into the future. Only the first computed input u0 is
applied, at time step k. Then in the next time step the QP is solved once again.

Figure 4.4 shows a block diagram of the MPC and its prefilter. The prefilter
takes Ud(k) and PCPL(k), obtains the operating point using the filter (4.12),
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Figure 4.4: Block diagram of input filter and converter system controlled with
LPV-MPC.

estimates the line current using the current estimator (4.7), and computes the
state vector (4.9). The state x(k), and the operating point are sent to the MPC,
which computes the optimal control input u(k), given the constraints, the cost
function J(θ) and the system model. The control input is then multiplied with
the operating voltage Ud0(k) to obtain Pstab(k), the power modification, since
the control input u(k) which the MPC computes is equal to the converter input
current. The power modification Pstab(k) is then sent to be realized in the
converter.

4.3.5 Software Implementation
The controller, defined by the QP (4.14) was implemented using CVXGEN
[24]. This is a web interface created by Jacob Mattinley which can create code
to solve QPs such as (2.7). This web tool allows the user to define an optimiza-
tion problem in simple and intuitive syntax, which is close to the mathematical
formulation. It then generates a solver written in C-code for the problem which
was specified. This script can be called in MATLAB or integrated into a larger
C program. CVXGEN implements all the methods for speeding up the online
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optimization which were brought up in Chapter 2.9.2. This makes it possible
to run the MPC in real time even with high sampling frequency.



Chapter 5

Experimental Setup

This chapter explains how the MPC regulator from Chapter 4 has been eval-
uated. In Section 5.1 we explain how the performance of the MPC regulator
will be tested, to see how it compares to the specifications set up in Section
2.5. Then, in Section 5.2 we discuss practical implementation aspects such as
computational complexity and hardware integration.

5.1 Performance Evaluation
The performance of the MPC regulator will be tested by analyzing the step
response of the closed loop system in various operating points. We will do
steps in both line voltage E and in reference power PCPL and analyze how it
affects the input filter voltage Ud and the stabilizing power Pstab.

We will also see how limiting the control input in different ways affects
the step response. We will consider two types of control input limitations.
First we will limit the control to a band ±Pmax kW which is a typical operat-
ing scenario. The control is limited to a range in order to limit the impact of
the power modification on other control objectives, such as limiting the torque
contribution which introduces mechanical stress. The second scenario con-
sidered here is when only negative power modifications are allowed. This a
typical situation when the system is close to a current limitation for example.

The conventional way of dealing with these limits at Bombardier is to let
the Hsub

∞ regulator compute its control input. Then if it is not possible to re-
alize the control input because of some limitation, the input is truncated. The
contribution of the power modification which was cut off can then be realized
using a shunt resistor which can be connected in parallel with the converter.
This method leads to power losses, since power is wasted through the shunt
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resistor. It could therefore be advantageous to be able to stabilize the system
without this shunt resistor.

The simulations evaluating the step response of the system have been done
in MATLAB/Simulink and in Bombardiers own software-in-the-loop (SIL)
simulator. Both environments are explained further below.

5.1.1 MATLAB/Simulink
MATLAB and Simulink have been used to test the MPC regulator on an ideal
CPL system. The CPL and input filter from Figure 2.1 were modelled in
Simulink using the electronics simulation platform PLECS. This environment
has been used to evaluate the regulator in a scenario where the internal model
of the MPC corresponds precisely with the target system, i.e. an ideal CPL.
The performance will therefore mainly be affected by the controller structure
and the tuning of the controller, without being degraded by modelling errors.

The Simulink model can also be used to precisely test the regulator’s sen-
sitivity to errors in parameter values. We can do that by giving the MPC regu-
lator the wrong information about the system, such as the wrong value for the
inductance of the input filter and see how that affects the performance.

5.1.2 The Software-in-the-Loop Simulator
For (SIL) simulations we use a proprietary software of Bombardier Trans-
portation, capable of testing the actual source code which runs in Bombardiers
converter modules, on a desktop computer. The SIL simulates the train envi-
ronment (input filter, converter and motors) so that code can be tested in an
environment which resembles a real train propulsion system quite well. The
SIL has been used to evaluate the regulator on control software which is much
closer to the real propulsion system in the train.

The train application which the MPC regulator was evaluated on is called
London Central Line (CLT) - a train line in the London Underground. It was
chosen because it has converter-load-dynamics which are quite well approx-
imated by a CPL, around the natural frequency ω0. Its dynamics are quite
representative of the dc powered trains Bombardier works with. The input fil-
ter in CLT also has a low natural frequency, which means that the bandwidth
of the controller doesn’t need to be too high. This puts less restrictions on the
sampling frequency of the MPC, and we can use a lower sampling frequency
without impacting performance too much.
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5.1.3 Evaluation Details
We will evaluate the step response of the system at three different operating
points. These points correspond to driving the train at a fixed speed while
varying the applied motor torque. For a CPL the specific value of the torque
and the speed do not matter for performance, but only the total power. The
total power is approximately given by

P = NmTmωm (5.1)

where Tm is the torque per motor, ωm is the mechanical motor speed and Nm

is the number of motors (which for CLT is 4). This approximation disregards
potential power losses but modelling those are out of the scope of this thesis.

The operating points which are considered are found in Table 5.1. The first
three points correspond to driving the train at full traction (maximum torque),
coasting (zero torque), and full brake (maximum negative torque). The oper-
ating points come from the speed-torque curve in Figure 5.1, which indicates
the maximum torque allowed for different speeds, in traction and in braking,
for the CLT train application. The chosen operating points are indicated with
blue diamonds in Figure 5.1. The simulations of the step response according
to these operating points will be done in Simulink and in the SIL simulator.
In Simulink, where we are simulating a true CPL, the torque and the speed
do not matter. The operating point is fully determined by the nominal voltage
and the nominal power. The nominal power for the various operating points
are given in the right-most column in Table 5.1. The nominal voltage for the
CLT application will be according to Table 5.2 for all simulations. We use the
Hsub

∞ regulator as a benchmark since it is the regulator which is conventionally
used at Bombardier for stabilization, and is already integrated into the code
for the SIL simulator. In Simulink we are also able to simulate the H∞ reg-
ulator from Chapter 2.7.3. Tests will be done with and without control input
limitations.

Even though the CLT system behaves a lot like a CPL, at low frequencies,
it is not a true CPL. For example, the torque regulation dynamics of the con-
verter are dependent on the speed of the motor. One consequence of this is
that it can display different dynamics for the same operating power, depend-
ing on which torque and speed is applied. For higher motor speeds the torque
dynamics are not as fast, and the CPL approximation does not work as well
as for lower speeds. To verify this behavior and to test the MPC regulator’s
robustness to it we will therefore evaluate the step response of the system for
one more operating point which results in the same total power as operating
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Figure 5.1: Speed-torque curve for CLT application. The operating points
(OPs) from Table 5.1 are marked and labeled in the curve.
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Table 5.1: Operating Points for CLT Simulations

Operating Point Parameters

№ Operating Point Torque / Motor Motor Speed Power P0

1. Full Traction 560 N m 125 rad/s 300 kW
2. Coasting 0 N m 125 rad/s 0 kW
3. Full Brake −500 N m 125 rad/s −234 kW
4. High Speed 240 N m 300 rad/s 300 kW

point 1 in Table 5.1, but has a different speed than what was used in the other
three operating points. This fourth operating point which we will evaluate per-
formance in is indicated with an orange diamond in Figure 5.1. This way we
can compare the response in the first operating point to that of the fourth to see
the impact of the varying degree of CPL behavior the CLT system displays.
The response which we will see is related to the regulator’s robustness towards
modelling errors on the load side. As we know, the MPC regulator does not
take torque dynamics into account. By comparing the response in operating
points with different torque dynamics we can see the regulators robustness to-
wards those. We refer to Table 5.1 again for the precise values for the operating
point.

5.1.4 Frequency Domain Analysis
For the LQR, and the H∞- and Hsub

∞ -regulators in Chapter 2.7, we have ex-
plicit expressions for the regulators. We can therefore analyze the frequency
response of the closed loop system while controlled with each one of these
regulators. The transfer functions which we will consider are Fe and Fp from
(2.40), which are the transfer functions from line voltage E and power ref-
erence PCPL to the control input Pstab. Ideally these should be zero for all
frequencies, but this is not possible. We can however compare how well the
controllers suppress the peak of these transfer functions. We will also look
at the transfer functions from E and PCPL to the states i and Ud. For a well
damped system these transfer functions should not have large resonance peaks.

Furthermore, we will look at the Nyquist curves of the admittance YDC

and the loop gain LDC . It is interesting to see how the regulators affect the
admittance YDC since we know from (2.4) that, for a true CPL, it is equal to
−P0/U

2
d0 for all frequencies, if no stabilization is applied. It is hence fixed

on the negative real axis for positive values of P0. The active stabilization
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Table 5.2: Filter Parameter Values for Simulation

Quantity Symbol Value Unit

CLT MCX

Filter resistance R 18.8 5 mΩ
Filter capacitance C 18.0 8 mF
Filter inductance L 8.4 1.6 mH
Filter resonance frequency ω0 81.3 279.5 rad/s
Filter damping coefficient ζ 0.0138 0.0056
Nominal input filter voltage Ud0 630 1500 V

which we apply will modify the admittance. From Chapter 2.3.1 we know
that the loop gain LDC is given by YDCZDC , and that without stabilization
the Nyquist curve of the loop gain encircles the point (−1, 0) in the complex
plane. According to the simplified Nyquist stability criterion, this makes the
system unstable. By plotting the loop gain for the system with stabilization
applied we can expect to see how the loop gain differs from the case where
there is no stability.

In the SIL simulator it is possible to identify the frequency response from
different inputs and outputs. This is done by exciting a desired system input
with a sinusoidal disturbance signal of known amplitude and measuring how
it affects different output signals. The frequency of the sinusoidal is varied
across a spectrum to obtain an empirical frequency response. This way we
can obtain the frequency response of the MPC regulator and compare it to the
same transfer functions for the H∞ regulator as well as the LQR regulator.
In particular, we will identify the transfer functions of the admittance YDC

and the loop gain LDC for the MPC regulator. Since the MPC optimization
problem is approximately the same as the infinite horizon LQR problem in
the case of no control signal limitations we can also expect the results from
the analytical solution of the LQR regulator to give an indication of how the
frequency response of the MPC would be in the same linear scenario.

5.2 Real-Time Implementation Aspects
Since the MPC regulator solves an online optimization problem it is important
to verify that the regulator can run in real time on the intended hardware. At
Bombardier Transportation the processing is done by a processor located on
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(a) (b) (c)

Figure 5.2: Photos of controller boards, from Bombardier Transportation [25].
Photo (a) shows the controller board, (b) shows the IO board, and (c) shows
the two boards mounted vertically, next to each other, in a rack.

a controller board which is integrated into the converter unit. This controller
board, which can be seen in Figure 5.2, is the lowest level control unit for the
train propulsion system. Figure 5.3 shows a schematic of the controller board,
integrated in a motor control application, where the part of the circuit which
corresponds to the input filter has been labeled. The motor converter and the
motors to the right in the drawing are what is simplified to the CPL in Figure
2.1. For the MPC regulator to be viable for use in real-time it has to be able to
run on this controller board alongside all the other processes.

5.2.1 Evaluation in Real-Time Environments
To make sure the MPC regulator can run in real time it will be evaluated in
Bombardier’s real-time simulator. This simulator is a hardware-in-the-loop
(HIL) simulator, meaning that the code runs on the hardware specific process-
ing unit, namely the controller board, while connected to a machine capable
of simulating the behavior of the train propulsion system, in real time. For
HIL simulations we have used dSPACE’s LabBox, of which a photo can be
seen in Figure 5.4. The controller board (see in Figure 5.2) is hooked up to the
LabBox and it is then able to simulate the propulsion system in real-time. For
the application which we have used it uses a sample time of 12 µs.

The MPC controller will also be tested in Bombardier’s power laboratory
(PowerLab). This is a testing lab where the entire propulsion system of the
train can be tested. In this testing environment the MPC regulator, which has
been integrated into the rest of the propulsion system software and is running
on the controller board, is tested together with the real converter and motor
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Figure 5.3: Diagram of the controller in an motor converter application, from
Bombardier Transportation [26]. The controller itself can be seen in the bot-
tom part of the drawing. It receives input signals from the input filter (labeled
DC-link) in the left part of the drawing, and from the motors to the right. The
computed control input is realized through the switching of transistors in the
motor converter.

Figure 5.4: Photo of a dSPACE SCALEXIO LabBox, which has been used for
real-time simulations. Photo from dSPACE [27].
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hardware. In this test the regulator is controlling the real converter seen in
Figure 1.2 and the load is a real motor, namely the one seen in Figure 1.3. The
propulsion motor is connected back-to-back with another motor which can be
used to introduce a counterforce to emulate a load. This testing environment is
as close as it gets to the ”real world” without having to test on a moving train.

These tests have primarily been used to evaluate practical aspects of run-
ning online MPC. For example, they have been used to verify that it was pos-
sible to implement the MPC regulator and fully integrate it as a functioning
part together with all the other control systems which run on the controller
board. This is an important aspect to evaluate since a regulator in an industrial
application most likely has to share computational resources in a processor en-
vironment which is already well utilized. This is the case with the controller
board in Bombardier’s propulsion system. With the controller board it is also
possible to measure the execution time of each processing loop. From this
we have been able to evaluate the computational burden of running MPC. The
CPU on the controller board 5.2 is an ARM Cotex A9 with a clock frequency
of 667 MHz.

The application which was available for testing in the HIL simulator and in
PowerLab, at the time this master thesis, is different from the CLT application.
This application is called MCX. This system has an input filter with a much
higher natural frequency ω0, and it is not as well approximated by a CPL, in
this frequency range. Unlike a CPL the system is even stable without active
stabilization. Had a system with dynamics which are well approximated by a
CPL in the region around the natural frequency been configured in the Power-
Lab, performance could have been evaluated there as well. Since the behavior
of the MCX system is so different from an ideal CPL around the natural fre-
quency ω0, the evaluation in the HIL simulator and in PowerLab can also be
seen as another test of the robustness of the MPC regulator. The MPC regu-
lator is expecting a system which behaves like a CPL but is getting something
completely different. The input filter parameters for the MCX application is
given in its corresponding column in Table 5.2.

5.2.2 System Modifications for Real-Time Functional-
ity

As mentioned in the previous subsection, the MCX application has system dy-
namics around its natural frequency which are quite different from a CPL. One
way of dealing with this mismatch would be to model the non-CPL behavior of
the system and incorporate it into the internal model of the MPC. This would
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however increase the order of the state space model. It is also outside the scope
of this thesis. As mentioned in Chapter 2.9.2 the computational complexity of
the MPC optimization problem is

O(N(n3 + n2m)) (5.2)

at best. Extending the model, to reflect more complicated dynamics, would
mean adding at least one more state, and likely two more states. According to
(5.2) the complexity grows as n3 where n is the number of states. So, to go
from 2 to 3 states would increase the complexity by a factor 33/23 ≈ 3.4 and
adding two more states would increase the complexity by a factor 43/23 = 8.
Extending the model is therefore something which one wants to avoid in MPC,
if computational speed is important.

The Hsub
∞ regulator in Chapter 2.7.4, which is the conventional input fil-

ter stabilization regulator at Bombardier, executes on the control board with
an execution period of 50 µs. Since the MPC optimization problem is quite
computationally burdensome, even for a system of lower degree, it was not
possible to have it execute that fast. Furthermore, from (5.2) we know that the
complexity of the MPC optimization is linear in prediction horizon N . The
prediction horizon N is proportional to the natural frequency of the open loop
system and the sampling frequency fs according to

N ∝ fs
ω0

Hence, if the sampling frequency is increased, the number of samples has to
increase as well in order for the MPC prediction horizon to include enough
time in its prediction. This means that increasing the sampling frequency not
only decreases the time available for the optimizer to find a solution, it also
makes the optimization problem more complex.

For this thesis the MPC regulator was placed on a level on the controller
board which executes at 5 ms. The reason for this choice was that it was an
execution speed in the range of what was deemed achievable with MPC with
the computational power available. For example [16] was able run MPC at the
same frequency with a higher order system. One difference is however that in
our case the MPC has to share computational resources with other tasks which
are also running on the EOS board. Another reason for why 5 ms in particular
was chosen was that there already existed a task level in the software with that
execution period, simplifying implementation.

One practical implementation problem of placing the MPC on such a slow
task compared to the 50 µs level which the other control loops operate on, is
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that we get aliasing, or frequency folding, if the MPC directly samples the
signals from the faster tasks. To prevent aliasing a first order low pass filter
was placed on the input of the MPC. If we refer back to Figure 4.4, the low
pass filter was added to the state x(k), between the output of the MPC prefilter
and the input of the MPC regulator. Hence, the MPC prefilter and the low
pass filter are executed on the fast 50 µs task while the MPC regulator itself is
slower and operates on the 5 ms task. However, the low pass filter degrades the
phase margin of the closed loop system. The phase margin is already not great
because the real-time system introduces some delays which were not present
in the Simulink model. We would therefore like to compensate for these and
increase the phase margin.

In order to increase the phase margin a lead filter was added to the input
of the MPC regulator, in series with the previously mentioned low pass filter.
The lead filter was designed to add phase margin at the natural frequency, and
invert the phase of the unmodeled dynamics, making the load more CPL-like,
and thus increasing the stability margin of the MPC regulator. The lead filter
is designed as a continuous time filter and is on the form

K

(
ατs+ 1

τs+ 1

)
(5.3)

where the upper and lower cutoff frequencies of the filter are given by 1/τ and
1/(ατ). The parameter α is related to the total phase gain. The maximum
phase gain is

arcsin
(
α− 1

α + 1

)
(5.4)

Finally, the gain K is chosen as 1/
√
α which results in a gain of 1 at the point

of maximum phase gain, which in this case is the resonance frequency. One
drawback of the lead filter is that it amplifies high frequencies, which means
that noise with a high frequency is amplified as well.

Another consequence of having the MPC regulator on a slower task of
5 ms (or equivalently 200 Hz) is that the output of the MPC regulator will be
seen as a jagged stair signal with sharp edges, from the perspective of the
faster 50 µs task. The stair-like signal generated by the MPC regulator will
introduce a 200 Hz signal (and higher frequency modes of that signal) into
the system. This could present itself to be an issue if the system dynamics
aren’t well damped enough. If that should be the case this 200 Hz mode will
be induced into the system.



Chapter 6

Evaluation on Ideal CPL

In this chapter we present the results of tests which have been made on an
ideal CPL, as described in Chapter 5. The MPC regulator results are compared
with the performance of the H∞ regulators from Chapter 2.7. As explained in
Chapter 5, simulations have been done in MATLAB/Simulink.

For the performance test the MPC has been evaluated using model pa-
rameters corresponding to the CLT train application. The model parameters
corresponding to that train application can be found in Table 5.2. Throughout
this chapter the LQR uses parameters according to Table 6.1, while the MPC
regulator uses parameters according to Table 6.2, unless otherwise stated. The
length of the prediction horizon, N , which is 20, corresponds to approximately
1.3 × 2π

ω0
. This is 1.3 times the period of the natural oscillations of the unsta-

bilized system. Simulations showed that the performance was degraded if the
prediction horizon covered less than one period. Very long prediction hori-
zons also didn’t make the performance noticeably better. This particular value
for N was chosen since it was a nice round number, longer than one period.

In Section 6.1 we present results of frequency plots, such as Nyquist dia-
grams and Bode plots. In Section 6.2 we present the results of MATLAB/Simulink
simulations of step responses in various operating points. Finally in Section
6.3 we present results where we have tested the MPC regulator’s robustness
towards errors in the input filter model. A discussion of the results with inter-
pretations are given later, in Chapter 8.

6.1 Frequency Domain Results
In this section we present results which are in form of frequency data. We
present Nyquist diagrams of the admittance YDC and the loop gain LDC for the

68
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Table 6.1: LQR Parameters

Parameter Description Symbol Value

Input filter voltage weight qUd 5
Control input weight qr 1
Filter time constant τ (ω0

4
)−1

Table 6.2: MPC Parameters

Parameter Description Symbol Value

Input filter voltage weight qUd 5
Control input weight qr 1
Final weight states Q̄ diag([0, 5])
Final weight control input R̄ 1
Prediction horizon N 20
Sampling frequency fs 200 Hz

different controllers. We present magnitude plots of the frequency response
from the external excitation signals E and PCPL to the control input Pstab, and
to the states Ud and i. The frequency domain results are plotted for the LQ-,
the H∞-, and the Hsub

∞ - regulators. For the LQR we use weights according
to Table 6.1. The filter constant for the operating point filter (3.6) has the
value of τ = ω0/4, namely one fourth of the natural frequency. Throughout
this section we will use solid lines to indicate that a result comes from an
analytical expression (a transfer function, which has been drawn), and dashed
lines to indicate that the result comes from identification in the SIL simulator.

6.1.1 Nyquist Diagrams
In this subsection we present Nyquist plots for the admittance YDC and the
loop gain LDC for the different regulators.

From Chapter 2.3.1 we know that the admittance is equal to −P0/U
2
d0 and

is negative real for positive powers, when no stabilization is applied. In Figure
6.1 we see how the different regulators (LQR, MPC, H∞ and Hsub

∞ ) modify
the admittance YDC . For the system to be stable the admittance should have
positive real part at the natural frequency ω0. This is achieved for all the reg-
ulators. The natural frequency is marked with a red dot in the Nyquist curve.
For LQR and H∞ we have the analytical result from the transfer functions.
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For Hsub
∞ we have plotted both the result from the transfer function, as well as

the identified admittance from SIL simulations. For the MPC regulator we do
not have an analytical expression for the regulator, so we only have the identi-
fied admittance from the SIL simulator. We know from the theory presented
in Chapter 4 that the MPC regulator should achieve a result which resembles
the LQR in linear operation, i.e. when there are no control input limitations.
If we look at the Nyquist diagram of YDC we see, however, that the curve for
LQR and MPC differ a bit. We do expect some difference in identified admit-
tance though, since we haven’t accounted for the power modification which is
caused by power losses. If we compare empirical and theoretical admittance
for the Hsub

∞ we see that there is some difference there as well. The difference
between the theoretical admittance for the LQR and the identified admittance
for the MPC regulator appear to be of the same order as what we see for the
Hsub

∞ and hence we conclude that the LQR and the MPC regulator likely be-
have very similarly in linear operation. The jitter and the jumps which can be
seen in the dashed curves is due to measurement noise.

Recall that the loop gain is given by ZDCYDC , that is the output impedance
of the input filter multiplied with the input admittance of the CPL. Without any
stabilization the Nyquist curve for the loop gain looks like Figure 2.2 from
Chapter 2.3.1. Figure 6.2 shows a similar Nyquist plot for the loop gain LDC ,
when stabilization is applied. Figure (a) shows the entire Nyquist curve while
(b) shows the curves zoomed in around the point (−1, 0). For stability the
Nyquist curve should not encircle this point. We see that the LQR and the
MPC regulators achieve this goal, as do the H∞ and Hsub

∞ regulators. Again,
there is a mismatch between the empirical results drawn with dashed lines and
the theoretical results drawn in solid lines, which can be attributed to power
modifications caused by power losses which we have neglected in our model.

6.1.2 Magnitude Plots From Excitation Signals to Con-
trol Input

Part of the performance specifications in Chapter 2.5 was to limit the use of
power modification Pstab. In Figure 6.3 the magnitude of the frequency re-
sponse of the transfer functions (a) FE and (b) Fp, found in (2.40), are plotted
for the CLT application. These are the transfer functions from the line voltage
E and the reference power PCPL to the control input Pstab. FE is a measure
of how much variations in line voltage E affect the power modification Pstab.
For perfect disturbance attenuation this transfer function should be zero, but
since the power modification Pstab is needed for stability this is not possible.
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Figure 6.1: Nyquist diagram of the admittance YDC for the CLT application.
The operating point is according to 1 in Table 5.1. Nyquist curves drawn in
solid lines come from analytical results. Curves drawn with dashed lines come
from identification in the SIL simulator. Red dots mark the location of the
resonance frequency.
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Figure 6.2: Nyquist diagram for the loop gain LDC for the CLT application.
The operating point is full traction according to 1 in Table 5.1. Plots in solid
lines are theoretical results from the transfer functions. Plots drawn with
dashed lines come from identification in the SIL simulator. Red dots mark
the location of the resonance frequency. The point (−1, 0) is marked with a
red cross. (a) shows the entire Nyquist curve. (b) shows the same curves but
zoomed in around the point (−1, 0) in the complex plane.
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In Figure 6.3 the horizontal gray lines mark where the gain is 1/
√
2. Above

this line we have amplification of signals. The LQR regulator, and in turn the
MPC regulator was tuned to give a response which resembles theH∞ andHsub

∞
regulators.

If we look at Figure 6.3 (a) we see that for the LQR regulator the peak is
slightly higher and the bandwidth of the amplification wider than for the Hsub

∞
regulator. The gain goes to zero in stationarity which means Pstab(t) → 0 as
time goes to infinity. This is what we want. The way the LQR is tuned we can
expect it to use more control input than the Hsub

∞ and the H∞ regulators when
trying to dampen variations in the line voltage E. The response can also be
expected to be somewhat slower. Since the MPC regulator is tuned in the same
way as the LQR, and since they seem to have loop gains which correspond with
each other it is expected that the MPC regulator should behave in a similar
manner.

If we instead look at Figure 6.3 (b) we see the magnitude of the frequency
response of Fp. This is the transfer function from the reference power PCPL

to the power modification Pstab. Recall that the performance specifications
in Chapter 2.5 states that we want to limit interference with the control ob-
jective of following the power reference. Perfect reference following would
mean that this transfer function Fp is zero for all frequencies (recall that P =

PCPL + Pstab). Since Fp is non-minimum phase this is not possible; the gain
has to be greater than 1 at the natural frequency ω0. Again, the gray horizontal
line marks where the gain is larger than 1/

√
2, where we have amplification.

This is the frequency range where the stabilization will disturb the reference
following. We see that the LQR regulator reaches above this threshold for a
wider frequency range than the Hsub

∞ regulator. The peak however is slightly
lower. The H∞ regulator on the other hand has the lowest peak out of all
the regulators but the peak is above 1/

√
2 for a wider frequency range. Like

before, we expect the MPC regulator to exhibit similar behavior as the LQR
regulator in linear operation.

6.1.3 Magnitude Plots From Excitation Signals to States
In Figure 6.4 the magnitude of the frequency response of the transfer functions
from the line voltage E and the power reference PCPL to the states i and Ud

have been plotted for the CLT application. The transfer functions have been
plotted for LQR,H∞ andHsub

∞ . An operating power of 300 kW, corresponding
to full traction according to Table 5.1, is used and all parameters are according
to the CLT column in Table 5.2.
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Figure 6.3: Frequency response of the transfer functionsFE andFp from (2.40)
for the CLT application, plotted in log-log scale. Plot (a) shows |FE| and (b)
shows |Fp|. The operating power is 300 kW. The gray horizontal line marks
the magnitude 1/

√
2 and the vertical line marks the value of the natural fre-

quency ω0.

One of the performance specifications in Chapter 2.5 was to have well
damped system dynamics. Well damped system dynamics are characterized
by low resonance peaks in transfer functions from external signals. Figure 6.4
(a) shows the transfer function from line voltage E to the line current i. We
see that for all the regulators there is a peak around the natural frequency of
the input filter. The LQR, however, gives a higher peak than the other two
regulators. This might be expected since we did not put a cost on the line
current in the LQR cost function. If we instead look at the transfer functions
from E and PCPL to the input filter voltage Ud (see Figure 6.4 (b) and (d)) we
see that the LQR does better when it comes to disturbance attenuation. The
peak is lower for the LQR than for the Hsub

∞ in both cases. This is reasonable
since that is what the LQR explicitly has been designed for, through the choices
of weights in its cost function (2.55). We do however see that the bandwidth
of the transfer function from E to Ud is slightly lower for the LQR than for
the other two regulators. This suggests that we can expect a slightly slower
step response from E to Ud, for the LQR and also for the MPC regulator. It
does however mean that the LQR and hence also the MPC regulator should
attenuate disturbances in the input filter voltage Ud better than what the Hsub

∞
does. This is an important characteristic needed to avoid over-voltages and
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under-voltages. Finally, the H∞ regulator, achieves better damping than both
the LQR and the Hsub

∞ regulator. It is worth noting once again though that this
regulator assumes that the line voltage E can be measured. This is a signal
which neither of the other regulators have available.

6.2 MATLAB/Simulink Simulation Results
This section presents simulation results for the MPC regulator which were
done in MATLAB/Simulink. We use parameters according to the CLT appli-
cation (see Table 5.2). The MPC uses a sample frequency of 200 Hz, which
is a sample frequency which we could also use in our real-time implementa-
tion (see Chapter 5.2 and Chapter 7). In the MATLAB/Simulink simulations
a filter constant of

ν =
1

4

ω0

2πfs

was used for the operating point filter (4.12) which was described in Chapter
4.3.2. This corresponds to a filter with a cut-off frequency which is one fourth
of the natural frequency, ω0, normalized by the sampling frequency fs.

The MPC regulator is evaluated by making steps in the excitation signals
E and PCPL and evaluating the response in terms of input filter voltage Ud

and control signal Pstab. That way we can see how well damped the system
response is. We will also see how much control input is used, in terms of
the power modification Pstab. By introducing control input limitations, we
can also see how the MPC regulator behaves under those circumstances. The
performance is compared to that of theH∞- andHsub

∞ - regulators from Chapter
2.7.

6.2.1 Response to Line Voltage Steps
In this subsection we present simulation results relating to the response of the
system when it is subject to a step in line voltageE. We have simulated the step
response for the operating points corresponding to full traction, coasting and
full brake in Table 5.1. Figure 6.5 shows the response in full traction, Figure
6.6 the response in coasting and 6.7 shows the response during full brake. The
step in line voltage is of magnitude 50 V. Since the Simulink model is a true
CPL, the operating point is determined fully by the nominal power (listed in
Table 5.1) and the nominal input filter voltage, which is found in Table 5.2.
For each operating point the response has been simulated for three different
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Figure 6.4: Magnitude of the frequency response from the input signals E

and PCPL to the states Ud and i, for the CLT application. Plotted in log-log
scale. Plotted for three different regulators, H∞, Hsub

∞ and LQR, at operating
power of 300 kW. The gray horizontal line marks the magnitude 1/

√
2 and

the vertical line marks the value of the natural frequency ω0
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types of control input limitations: no limits, band limited control input, and
upper limited control input.

Looking at Figure 6.5 which shows the response when the load draws full
power, we see that the MPC regulator gives a well damped response in input
filter voltage Ud. This is most notable in Figure 6.5 (a) where there are no con-
trol input limitations. The peak of the response is lower than what the Hsub

∞
regulator achieves. The response of the MPC regulator is however a little bit
slower. It also uses more control input than the Hsub

∞ regulator. This corre-
sponds to what we saw in the frequency domain results in Section 6.1.2 and
Section 6.1.3.

When the control input is band limited such as can be seen in Figure 6.5
(c) and (d) the MPC and the Hsub

∞ achieves similar damping of the voltage Ud.
We see however that the way the MPC regulator has been tuned it will use
more control input than the Hsub

∞ regulator, in order to minimize the ripple in
the voltage Ud.

When the control input is limited to only negative values such as can be
seen in Figure 6.5 (e) and (f), the MPC achieves a much more well damped
response than what the Hsub

∞ regulator does. Looking at the response in power
modification we see that the MPC uses a large power modification right away to
quickly damp the system. This reduces the ripple in the voltage Ud while also
requiring less power modification in total, if compared with theHsub

∞ regulator.
The H∞ regulator, however, which measures both the input filter voltage

Ud and the line voltage E, outperforms both the MPC regulator and the Hsub
∞

in all scenarios.
If we turn our focus to Figure 6.6 and Figure 6.7 we see that the MPC

regulator behaves similar to how it behaved in the case of full traction. In
general it demands more power modification than the Hsub

∞ regulator but also
achieves a smoother response in input filter voltage Ud. It can be argued that
the amount of power modification that the MPC demands in these conditions is
unnecessarily large given that the system is stable in these circumstances. The
MPC, however, has been designed to maximize damping during traction, and
the weights are thus chosen accordingly. If one wants less power modification
in stable operating conditions the weights could for example be made adaptive.
To simplify the design this was not done.

In Table 6.3 the summed reference error for the voltage step response is
shown, for the operating points full traction, coasting and braking, and for the
three different types of control input limitations which have been considered.
The table includes the summed error for the regulators MPC, H∞ and Hsub

∞ .
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Table 6.3: Summed Error During Voltage Step in Simulink

EΣ [V]

Operating Point Control Limits [kW] MPC H∞ Hsub
∞

±∞ 9.73 7.71 9.75
Full traction ±40 15.72 8.39 13.87

[−∞, 0] 23.56 18.63 30.60

±∞ 9.19 7.51 9.04
Coasting ±20 11.58 8.08 10.66

[−∞, 0] 13.28 10.76 14.16

±∞ 8.96 7.67 8.73
Full brake ±20 9.37 7.67 8.73

[−∞, 0] 9.94 8.65 9.95

The summed error EΣ is computed according to

EΣ =

√√√√ 1

N

N∑
k=0

e(k)2 (6.1)

where e(k) = Ud(k) − U ref
d . It is a way of assigning a number to the quality

of the step response. The more well damped the system dynamics are, the
smaller EΣ is.

Similarly the summed power modification, PΣ, for each voltage step is
shown in Table 6.4. It is computed according to

PΣ =

√√√√ 1

N

N∑
k=0

Pstab(k)2 (6.2)

The smaller the total power modification is during the time of the step change,
the smaller PΣ is.

From Table 6.3 and Table 6.4 we see that the operating condition where the
MPC regulator results in both a smaller summed voltage error, and a smaller
summed control input, compared to Hsub

∞ , is in full traction with the control
input limited to negative values. This suggests that the knowledge of control
constraints gives the MPC an advantage in this scenario.
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Figure 6.5: Response to a 50 V change in line voltage. Operating point is full
traction according to 1 in Table 5.1. Plots (a) and (b) show response with
no control input limitations. Plots (c) and (d) show response when the control
input is limited to ±40 kW. Plots (e) and (f) show response when control input
is limited to the interval [−∞, 0] W. The MPC regulator is compared to the
Hsub

∞ regulator and the H∞ regulator.
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Figure 6.6: Response to a 50 V change in line voltage. Operating point is
coasting according to 2 in Table 5.1. Plots (a) and (b) show response with
no control input limitations. Plots (c) and (d) show response when the control
input is limited to ±20 kW. Plots (e) and (f) show response when control input
is limited to the interval [−∞, 0] W. The MPC regulator is compared to the
Hsub

∞ regulator and the H∞ regulator.



CHAPTER 6. EVALUATION ON IDEAL CPL 81

0 0.1 0.2 0.3

640

660

680

700

Time [s]

U
d

[V
]

Step Response E → Ud

Hsub
∞

MPC
H∞

0 0.1 0.2 0.3

0

20

40

Time [s]

P
st
a
b

[k
W

]

Step Response E → Pstab

Hsub
∞

MPC
H∞

0 0.1 0.2 0.3

640

660

680

700

Time [s]

U
d

[V
]

Step Response E → Ud

Hsub
∞

MPC
H∞

0 0.1 0.2 0.3

−10

0

10

20

Time [s]

P
st
a
b

[k
W

]
Step Response E → Pstab

Hsub
∞

MPC
H∞

0 0.2 0.4

640

660

680

700

Time [s]

U
d

[V
]

Step Response E → Ud

Hsub
∞

MPC
H∞

0 0.2 0.4

−10

−5

0

Time [s]

P
st
a
b

[k
W

]

Step Response E → Pstab

Hsub
∞

MPC
H∞

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Response to a 50 V change in line voltage. Operating point is
full brake according to 3 in Table 5.1. Plots (a) and (b) show response with
no control input limitations. Plots (c) and (d) show response when the control
input is limited to ±20 kW. Plots (e) and (f) show response when control input
is limited to the interval [−∞, 0] W. The MPC regulator is compared to the
Hsub

∞ regulator and the H∞ regulator.
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Table 6.4: Summed Power Modification During Voltage Step in Simulink

PΣ [kW]

Operating Point Control Limits [kW] MPC H∞ Hsub
∞

±∞ 25.10 12.01 15.54
Full traction ±40 15.42 10.69 12.78

[−∞, 0] 22.78 19.49 20.09

±∞ 17.25 7.70 9.10
Coasting ±20 7.16 5.79 6.20

[−∞, 0] 5.26 6.18 3.82

±∞ 12.85 5.28 4.98
Full brake ±20 7.20 5.28 4.98

[−∞, 0] 0.71 2.39 0.65

6.2.2 Response to Power Reference Steps
In this subsection we present simulation results related to the response of the
system when it is subject to a step in power reference PCPL. We have simu-
lated the step response for the operating points corresponding to full traction,
coasting and full brake in Table 5.1, as was done in the previous subsection for
the voltage steps. Figure 6.8, 6.9 and 6.10 show the response of the CPL and
input filter system to a step in power reference PCPL. The step is of magnitude
30 kW or 10 % of the operating power when in full traction. For each operating
point the response has been simulated for three different types of control input
limitations: no limits, band limited control input, and upper limited control
input.

Looking at Figure 6.8 which shows the response when the load draws full
power, we see that the MPC regulator gives a well damped response in input
filter voltage Ud. This is most notable in Figure 6.8 (a) where there are no
control input limitations. The peak of the response is lower than what the
Hsub

∞ regulator achieves. The response of the MPC regulator is however a little
bit slower. It also uses more control input. This is similar to what we saw in
Section 6.2.1 for the step in line voltage.

When the control input is band limited such as can be seen in Figure 6.8
(c) and (d) the MPC achieves less damping of the input filter voltage Ud than
what the Hsub

∞ does. The MPC regulator also demands more control input than
what the Hsub

∞ regulator does.
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When the control input is limited to only negative values such as can be
seen in Figure 6.8 (e) and (f), the MPC achieves a much more well damped
response than what the Hsub

∞ regulator does. The ripple dies out much sooner
than what it does for the Hsub

∞ regulator. Looking at the response in power
modification we see that although the power modifications made by the MPC
are large in magnitude, the total modification made is smaller than what the
Hsub

∞ does.
If we turn our focus to Figure 6.9 and Figure 6.10 we see that the MPC reg-

ulator behaves similar to how it behaved in the case of full traction. In general
it demands more power modification than the Hsub

∞ regulator but also achieves
a response with lower peak in the input filter voltage Ud. Again, it can be ar-
gued that the amount of power modification that the MPC demands in these
conditions is unnecessarily large given that the system is stable in these cir-
cumstances. As was argued in Section 6.2.1, the MPC, has been designed to
maximize damping during traction, and the weights are thus chosen accord-
ingly. If one would use less power modification in stable operating conditions
the weights could be made adaptive. To simplify the design this was not done.

In Table 6.5 the summed reference error for the response in input filter
voltage Ud is shown. As before the table includes the summed error, EΣ, for
the different regulators. The error value is computed according to (6.1), in
the same was as was done in Section 6.2.1. Similarly, Table 6.6 shows the
summed power modification PΣ for each of the step responses. The value is
computed according to (6.2), as was done in Section 6.2.1. Again, as in the
case of the voltage step, the advantage of the MPC is seen in the case of full
traction, with negative control constraints. In most other operating conditions
the Hsub

∞ performs better than the MPC since it results in a smaller summed
error value while also having a smaller summed control input.

6.3 Robustness Towards Model Errors in the
Input Filter

In this section we present results which are meant to evaluate how robust the
MPC regulator is towards a certain type of modelling errors. In particular we
are considering errors in the values of the RLC filter parameters. We will also
consider errors in the value of the parameter θ, which also impacts the MPC
state space model.

Figure 6.11 shows the response in input filter voltage Ud and control input
Pstab to a step in line voltage E, for the ideal CPL model in Simulink, using the
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Table 6.5: Summed Error During Power Reference Step in Simulink

EΣ [V]

Operating Point Control Limits [kW] MPC H∞ Hsub
∞

±∞ 5.15 2.71 5.11
Full traction ±20 7.41 4.01 5.49

[−∞, 0] 6.36 2.71 10.95

±∞ 4.42 2.69 4.55
Coasting ±10 5.50 4.54 4.91

[−∞, 0] 4.28 2.70 5.29

±∞ 3.97 2.67 4.18
Full brake ±10 4.09 3.43 4.18

[−∞, 0] 3.82 2.67 4.35

Table 6.6: Summed Power Modification During Power Reference Step in
Simulink

PΣ [kW]

Operating Point Control Limits [kW] MPC H∞ Hsub
∞

±∞ 7.92 6.11 5.14
Full traction ±20 8.05 5.18 5.24

[−∞, 0] 7.63 6.11 8.60

±∞ 4.92 4.92 2.97
Coasting ±10 3.90 3.15 2.85

[−∞, 0] 3.57 4.92 2.72

±∞ 3.33 4.01 1.63
Full brake ±10 3.38 2.54 1.63

[−∞, 0] 2.20 4.01 1.38



CHAPTER 6. EVALUATION ON IDEAL CPL 85

MPC regulator. Errors have been introduced into the MPC system model. The
errors are introduced through perturbing the value of the input filter parameters
R and L, as well through varying the operating point θ. The error is indicated
as a relative difference from the nominal value in Table 5.2. In Figure 6.11,
R0 and L0 refer to the nominal values. θ0 refers to the correct operating point
parameter as given by the fraction P0/U

2
d0. The voltage plot has been centered

around the peak in order to magnify the differences in the step response.
From Figure 5.1 we see that the MPC is robust towards quite large varia-

tions in the input filter parameters. For example, overestimating the resistance
R by 10 times barely has a visible impact on the step response. A tenfold
underestimation of the inductance L results in a less well damped system re-
sponse but does not affect stability. The model is more sensitive to errors in the
operating point parameter θ but can still handle quite large deviations in this
case as well. Relative errors of a factor 2 noticeably affects the step response
but keeps it well damped.
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Figure 6.8: Response to a 30 kW power reference change. Operating point is
full traction according to 1 in Table 5.1. Plots (a) and (b) show response with
no control input limitations. Plots (c) and (d) show response when the control
input is limited to ±20 kW. Plots (e) and (f) show response when control input
is limited to the interval [−∞, 0] W. The MPC regulator is compared to the
Hsub

∞ regulator and the H∞ regulator.
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Figure 6.9: Response to a 30 kW power reference change. Operating point
is coasting according to 2 in Table 5.1. Plots (a) and (b) show response with
no control input limitations. Plots (c) and (d) show response when the control
input is limited to ±10 kW. Plots (e) and (f) show response when control input
is limited to the interval [−∞, 0] W. The MPC regulator is compared to the
Hsub

∞ regulator and the H∞ regulator.
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Figure 6.10: Response to a 30 kW power reference change. Operating point
is full brake according to 3 in Table 5.1. Plots (a) and (b) show response with
no control input limitations. Plots (c) and (d) show response when the control
input is limited to ±10 kW. Plots (e) and (f) show response when control input
is limited to the interval [−∞, 0] W. The MPC regulator is compared to the
Hsub

∞ regulator and the H∞ regulator.



CHAPTER 6. EVALUATION ON IDEAL CPL 89

0 0.05 0.1 0.15 0.2
670

680

690

700

710

Time [s]

U
d

[V
]

Step Response E → Ud

R = R0

R = 10 ·R0

R = 0.1 ·R0

0 0.05 0.1 0.15 0.2

0

20

40

60

80

Time [s]

P
st
a
b

[k
W

]

Step Response E → Pstab

R = R0

R = 10 ·R0

R = 0.1 ·R0

0 0.05 0.1 0.15 0.2

680

700

720

Time [s]

U
d

[V
]

Step Response E → Ud

L = L0

L = 10 · L0

L = 0.1 · L0

0 0.05 0.1 0.15 0.2

0

20

40

60

80

Time [s]

P
st
a
b

[k
W

]
Step Response E → Pstab

L = L0

L = 10 · L0

L = 0.1 · L0

0 0.05 0.1 0.15 0.2
670

680

690

700

710

Time [s]

U
d

[V
]

Step Response E → Ud

θ = θ0
θ = 2 · θ0
θ = 0.5 · θ0

0 0.05 0.1 0.15 0.2

0

50

Time [s]

P
st
a
b

[k
W

]

Step Response E → Pstab

θ = θ0
θ = 2 · θ0
θ = 0.5 · θ0

(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Response to a 50 V change in line voltage. Errors have been
introduced into the MPC system model. Plots (a) and (b) show the response
when error is introduced in the value of the resistance R. Plots (c) and (d)
show the response when error is introduced in the value of the inductance L.
Plots (e) and (f) show the response when error is introduced in the value of the
operating point parameter θ. Operating points is full traction according to 1 in
Table 5.1.



Chapter 7

Evaluation in Train Propulsion
System

In this chapter we present results regarding implementation of an online LPV-
MPC regulator in a real propulsion system.

In Section 7.1 we present results from implementation in the SIL simula-
tor. As explained in Chapter 5.1.2, this environment simulates the propulsion
system of the train on a desktop computer. We will use the CLT application
for these simulations since its dynamics are fairly close to an ideal CPL around
the natural frequency.

In Section 7.2 we will take it a step further and simulate in the HIL simu-
lator. Here the code runs in real-time on application specific hardware. Then,
in Section 7.3 we show that the regulator also works in the PowerLab. As ex-
plained in Chapter 5.2 the real-time evaluations were made on a train system
which did not behave much like an ideal CPL, since that was the testing en-
vironment available at the time of the thesis. These tests are therefore used
to evaluate different aspects regarding implementation in real-time environ-
ments. In Section 7.4 we give results regarding execution time with the MPC
regulator on the controller board. Finally in Section 7.5 we give results re-
garding required memory requirements for the MPC program. The results are
analyzed and discussed in Chapter 8.

7.1 Evaluation in the SIL Simulator
This section gives simulation results for step response in the SIL simulator,
using the CLT system model. As mentioned in Chapter 5, the SIL simulator
models the actual train environment and hence is not an ideal CPL model.
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Section 7.1.1 shows a comparison of the simulated step response in the
SIL simulator compared to that in Simulink. Then in Section 7.1.2 we eval-
uate how different values of the operating point filter parameter ν affects the
step response. In Section 7.1.3 we evaluate the current estimator which was
designed in 4.2. Later, in Section 7.1.4 we study the impact of varying the
weights in the MPC cost function. We will also see how the MPC regula-
tor handles operating conditions where the dynamics of the CLT application
are less like a CPL. Lastly, in Section 7.1.5 we present power reference steps
for the system, for various operating points, showing that the MPC works as
intended the SIL simulator for all operating points.

7.1.1 Robustness Towards CPL Modeling Errors
Figure 7.1 shows a comparison between the system response in Simulink, us-
ing the ideal CPL model, and the response in the SIL simulator, where dif-
ferent non-ideal CPL dynamics are present. The figure shows the response
in input filter voltage Ud and control input Pstab to a 50 V step in line volt-
age E. The response has been simulated in Simulink using the LQR and the
MPC regulator, and in the SIL simulator using the MPC regulator. The MPC
regulator uses a filter constant for the operating point filter (4.12) which is
ν = 1

4
ω0

2πfs
. The differences in the response between the LQR and the MPC as

simulated in Simulink may be attributed to the fact that the LQR is designed as
a continuous-time regulator, while the MPC regulator is designed as a discrete-
time regulator with a sample rate of 200 Hz. The LQR also has direct access
to the line current i while the MPC regulator estimates this signal. The step
response of the system, controlled by the MPC, is slightly less damped in the
SIL simulator than what it is in Simulink. By tuning the operating point filter
parameter for the SIL model a more well damped response can be achieved
(see Section 7.1.2). Overall the response is still quite similar. This shows that
the CPL assumption holds quite well for a real train application, at least for
this operating point.

7.1.2 Impact of the Operating Point Filter Parameter
Recall the MPC operating point filter (4.12) with parameter ν which is normal-
ized frequency. Figure 7.2 shows the system response to a step in line voltage
E, in the SIL simulator, for a few different values of ν. The MPC regulator
is used for stabilization. Figure 7.2 (d) shows the response in the operating
point parameter θ to the step. Looking at the yellow line in Figure 7.2 (a), we



92 CHAPTER 7. EVALUATION IN TRAIN PROPULSION SYSTEM

0 0.2 0.4

640

660

680

700

Time [s]

U
d

[V
]

Step Response E → Ud

LQR Simulink
MPC Simulink
MPC SIL

0 0.2 0.4

0

50

Time [s]

P
st
a
b

[k
W

]

Step Response E → Pstab

LQR Simulink
MPC Simulink
MPC SIL

(a) (b)

Figure 7.1: Comparing step response for LQR and MPC in Simulink to MPC
in SIL simulator. Response to a 50 V change in line voltage. Operating point is
full traction according to 1 in Table 5.1. There are no control input limitations.

see that a small value of ν, corresponding to a low cutoff frequency, leads to
the smoothest response in input filter voltage Ud. However, this leads to a very
slow settling time for the line current i (see Figure 7.2 (b)) and the power mod-
ification Pstab (see Figure 7.2 (c)). Since one of the performance specifications
is to limit the use of power modification such a cutoff frequency is undesirable.
If on the other hand the cutoff frequency ν is too close to the natural frequency
ω0 the system becomes less damped, although quite fast (see the blue curves in
Figure 7.2). Through tuning we noticed that a value of ν = 1

8
ω0

fs
worked well

in the SIL simulator. This gave a well damped input filter voltage Ud while
keeping the line current i and the power modification well damped as well.

7.1.3 Measured Versus Estimated Current
In this subsection we evaluate the current estimator which was designed in
Chapter 4.2. Figure 7.3 shows the measured and the estimated line current
during a 50 V step in line voltage E. We see that the estimated current is noisy
but follows the measured current well.

Figure 7.4 shows the response in input filter voltage Ud and control input
Pstab for estimated and measured current respectively. The response is to a
step in line voltage, E. From the figure we see almost no difference in the two
responses. The reason why it doesn’t matter that the current estimator is noisy
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is that the current is band-pass filtered before used in the MPC. This is done
no matter if estimated or measured current is used. The band-pass filtering
is a result of the fact that the MPC (1) subtracts steady-state signals since it
works with deviations from an equilibrium, and (2) it operates on a frequency
of 200 Hz and thus low-pass filters all input signals to avoid aliasing. The
aliasing filter will at the same time remove the high frequency noise from the
estimated current.

7.1.4 Impact of Weights and Varying CPL Dynamics
In this subsection we show how varying the weights in the MPC cost function
affects the system dynamics in the SIL simulator. In Figure 7.5 we see the
response of the system for two different weights on the input filter voltage
Ud. The response is also shown for two different operating points. The first
operating point (response plotted in Figure 7.5 (a) and (b)) is the first operating
point in Table 5.1 and the second operating point (response plotted in Figure
7.5 (c) and (d)) is the fourth operating point listed in Table 5.1. Both of these
operating points correspond to full traction, but at two different motor speeds.
As explained in Chapter 5.1.3 the torque dynamics are different for higher
motor speeds and the CPL approximation does not hold as well there. We
want a regulator which is robust to these variations in system dynamics.

Looking at Figure 7.5 (a) and (b) we see that having a larger weight on Ud

pushes down the peak of the voltageUd more, but also uses more control input.
In the second operating point the response becomes a lot less well damped in
the case when qUd

= 1 (see Figure 7.5 (c) and (d)). This is despite it using
almost as much power modification Pstab. We hence see that designing the
controller in order to make the system dynamics more damped, by increasing
the weight on the input filter voltage Ud, also makes the controller more robust
towards modelling errors in the CPL.

7.1.5 Power Reference Steps
In this subsection we present the response to a step in power referencePCPL for
three different operating points, full traction, coasting, and full brake, where
the operating points are defined in Table 5.1. The response is plotted in Figure
7.6. The size of the step in power reference is 50 kW. Figure 7.6 (a) and
(b) show the response while operating in full traction, Figure 7.6 (c) and (d)
show the response while operating in coasting, and Figure 7.6 (e) (f) shows the
response while operating in full brake. The vertical axis has been scaled in the
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same way for all the plots so that it is clear that power modifications of very
different amplitudes are needed depending on what the operating condition is.
Similarly, the amplitude of the spike in the voltage Ud differs a lot depending
on how well damped the system is on its own. In coasting and in braking the
system is as we know stable. We see that the MPC regulator behaves a lot like
what we saw in the Simulink simulations. In these simulations we have set the
operating point filter parameter to be ν = 1

8
ω0

2πfs
.

7.2 Real-Time Simulations for MPC Regula-
tor

This subsection gives real-time simulation results for the MCX project de-
scribed in Chapter 5.2. As mentioned previously this system is already well
damped, so this test is aimed at checking feasibility of the MPC regulator
design. The simulations have been performed in the HIL simulator and the
MPC regulator is thus running in real-time on application specific Bombardier
hardware, together with all the other control systems which exist in the MCX
propulsion system. The MPC regulator is running at a sampling frequency of
200 Hz and the prediction horizon is 5 time steps. The length of the predic-
tion horizon, N , corresponds to approximately 1.1× 2π

ω0
for the MCX applica-

tion. This is 1.1 times the period of the natural oscillations of the unstabilized
system. Simulations showed that the performance was degraded if the pre-
diction horizon covered less than one period. Very long prediction horizons
also didn’t make the performance noticeably better. This particular value for
N was chosen since it was a nice round number, longer than one period which
was possible to realize with the available hardware.

Figure 7.7 show HIL simulations of the response in input filter voltage
and torque modification when a step is made in the torque reference and in
the line voltage. The operating point is full traction which in this application
corresponds to a reference torque of 1560 N m. The reference speed is 30 km/h
which corresponds to a motor speed of about 140 rad/s. The plots show the
response in input filter voltage as well as the applied stabilizing torque Tstab,
which is what the stabilizing power modification Pstab is converted into before
implementation in the converter. The torque modification was limited to ±
500 N m.
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7.3 PowerLab Experiment
The MPC regulator was also tested on MCX in PowerLab. As mentioned
before, this system is really well damped, even without any stabilization, so
this test is aimed at checking feasibility of the MPC regulator design. Figure
7.8 shows the response of the MCX application during a 100 N m step in torque
reference. The response in input filter voltage Ud and the applied control input
is shown. The result of the MPC stabilization is plotted together with the Hsub

∞
stabilization, and no stabilization at all.

7.4 Execution Time
As well as evaluating step responses for the MPC regulator through HIL sim-
ulations and in PowerLab, we also measured the execution time of running the
MPC optimization code on the controller board. This was done in the HIL
simulator. The test was made by measuring the execution time of the 5 ms
task on the control board, while operating in full traction and varying the train
speed from 0 km/h to 80 km/h. By execution time we refer to the time it takes
for the processor to perform all calculations which are needed for the next
sample period. Thus by measuring the execution time of the 5 ms task level
of the controller board we measure the time it takes to complete all processes
which are located on the 5 ms level and levels fast than that. For the program
to be able to run all calculations have to be finished within the time span of
the sample period, namely 5 ms.

During the test the maximum and the average execution time were noted.
This was done for three different values for the tolerance in the infeasible
start Newton method which has been used in the MPC optimizer (see Chapter
2.9.2). The execution time was also compared to a code which does not have
the MPC optimizer in it. Table 7.1 lists the average and maximum execution
time for these tests. We see that the MPC optimizer adds about an order of
magnitude to the maximum execution time. We also see that for this particu-
lar problem, neither the average nor the maximum execution time for the MPC
changes dramatically within the tolerance range which we have tested. The to-
tal time stays within the same order of magnitude for all tested tolerances. We
can also see that even for the strict tolerance of 1 × 10−5 there is a decent
margin between the maximum execution time and the task cycle time which is
5 ms. This is however a tolerance which is much stricter than what is needed
for good control performance.
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Table 7.1: Execution Time

Regulator Tolerance Max. Time [ms] Average Time [ms]

MPC 1 × 10−5 0.780 0.735
MPC 1 × 10−2 0.664 0.619
MPC 1 0.522 0.440
Hsub

∞ - 0.051 0.005

7.5 Impact on Storage Utilization
Without the MPC code, the file which runs on the controller board is 130 kB in
size. With the MPC code it is 153 kB. It is thus a total memory storage increase
of 23 kB or approximately 18 %. The MPC regulator thus adds a substantial
amount to the total code. We did not look at dynamic memory utilization in
this thesis.
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Figure 7.2: Comparison of the step response using MPC for different values of
the operating point filter parameter. Response to a 50 V change in line voltage.
Operating point is full traction according to 1 in Table 5.1. (a) shows the
response in input filter voltage Ud, (b) the the response in line current i, (c)
the response in power modification Pstab, and (d) shows the response in the
operating point parameter θ.
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Figure 7.3: Estimated versus measured current in the SIL simulator. Response
to a 50 V change in line voltage. Operating point is full traction according to
1 in Table 5.1. There are no control input limitations.
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Figure 7.4: Comparing step response for MPC with measured and estimated
current in the SIL simulator. Response to a 50 V change in line voltage. Op-
erating point is full traction according to 1 in Table 5.1. There are no control
input limitations.
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Figure 7.5: Comparing step response for MPC with two different sets of
weights, in the SIL simulator. Response to a 50 V change in line voltage. In
plots (a) and (b) the operating point is full traction according to 1 in Table 5.1.
In plots (c) and (d) operating point is full traction according to 4 in Table 5.1.
There are no control input limitations.



CHAPTER 7. EVALUATION IN TRAIN PROPULSION SYSTEM 101

0 0.2 0.4

550

600

650

Time [s]

U
d

[V
]

Step Response PCPL → Ud

MPC
Hsub

∞

0 0.2 0.4
−100

−50

0

50

Time [s]

P
st
a
b

[k
W

]

Step Response PCPL → Pstab

MPC
Hsub

∞

0 0.2 0.4

550

600

650

Time [s]

U
d

[V
]

Step Response PCPL → Ud

MPC
Hsub

∞

0 0.2 0.4
−100

−50

0

50

Time [s]

P
st
a
b

[k
W

]
Step Response PCPL → Pstab

MPC
Hsub

∞

0 0.2 0.4

550

600

650

Time [s]

U
d

[V
]

Step Response PCPL → Ud

MPC
Hsub

∞

0 0.2 0.4
−100

−50

0

50

Time [s]

P
st
a
b

[k
W

]

Step Response PCPL → Pstab

MPC
Hsub

∞

(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Response to a 100 N m change in reference power PCPL. Plots
(a) and (b) show response when the operating point is full traction, plots (c)
and (d) show the operating point is coasting, and plots (e) and (f) show the
response the operating point is full brake. The operating points are according
to Table 5.1. The MPC regulator is compared to the Hsub

∞ regulator.
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Figure 7.7: HIL step responses while in full traction (reference torque is
1560 N m). The reference velocity of the train is 30 km/h, corresponding to a
motor speed of of 140 rad/s. The torque modification is limited to ± 500 N m.
Plots (a) and (b) show voltage and torque modification during a 500 N m step
in torque reference. Plots (c) and (d) show voltage and torque modification
during a 50 V step in line voltage. The MPC regulator is compared to Hsub

∞
and no stabilization at all.
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Figure 7.8: Step response in power lab while operating at a reference torque
of 750 N m corresponding to full traction. The reference velocity of the train
was 30 km/h, corresponding to an electrical velocity of about 140 rad/s. The
stabilizing torque modification is limited to ±100 N m. Plots (a) and (b) show
voltage response and stabilizing torque modification during a 150 N m step in
torque reference. The MPC regulator is compared to Hsub

∞ and no stabilization
at all.



Chapter 8

Discussion

This chapter discusses the results of the tests which were done on the MPC
regulator in Chapter 6 and Chapter 7. Section 8.1 discusses results related to
the ideal CPL model. These results come from MATLAB/Simulink and were
presented in Chapter 6. Then in Section 8.2 we discuss the results of the tests
from Chapter 7 which were done in the SIL simulator. Section 8.3 discusses
the results regarding real-time implementation of the MPC regulator, which
were presented in Chapters 7.2 - 7.3. The discussion of the results are tied
back to the performance specifications in Chapter 2.5.

8.1 Stabilization of Ideal CPL
From the results in Chapter 6 we see that the proposed LPV-MPC design is
a viable method for stabilization of the CPL and input filter system. This is
something which we see both from the Nyquist diagrams of the admittance
YDC and the loop gain LDC in Chapter 6.1, and from the step response results
in Chapter 6.2. The magnitude plots in Chapter 6.1.2 and Chapter 6.1.3 show
that the LQR, and by reasoning, that also the MPC have a smooth frequency
response without any large resonance peaks in the relevant transfer functions.
This is achieved despite LQR being analogous with H2 optimization, which is
known to have the tendency of giving large resonance peaks. In the design we
have tried to achieve a response which is similar to that of the Hsub

∞ regulator.
Because of the limited degrees of freedom which our regulator has, this was
not possible, but we have come fairly close.

The MPC regulator achieves the goal of a well damped system response,
and in particular a well damped input filter voltage Ud as we see from the plots
of the step response from the excitation signals E and PCPL. The MPC con-

104
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trol structure is hence capable of satisfying the performance specifications in
Chapter 2.5. It also reflects the way the weights have been chosen in the MPC
cost function (2.70), where a larger cost was put on deviations in input filter
voltage Ud. This is one of the strengths of the MPC regulator. It is quite in-
tuitive to tune, since it doesn’t require much understanding of the frequency
domain. Instead we just punish deviations of the relevant signals, in time do-
main. This is quite easy to grasp, at least when the number of parameters is
manageable. Keeping the number of parameters manageable was something
which we had in mind throughout the design process. The final LPV-MPC
regulator has only two main tuning variables, the relative weight on the input
filter voltage Ud and the control input u, as well as the operating point filter pa-
rameter ν. This makes it easy to reconfigure the MPC regulator, should design
criteria change.

From the simulated step responses in Simulink we see that the way the
MPC regulator achieves more damping is by using more of the power modifi-
cation Pstab. This is the case both when the control input is limited and when it
is not. These two performance specifications, damping and limited use of con-
trol input, are in a way fundamentally at odds, no matter which control method
we use. The trade-off between the two are partly affected by the requirements
of the application and partly a design choice by the control engineer.

Let us for a while focus on the way the MPC regulator deals with stabi-
lization in the scenario where the control input is limited to negative values.
If we look at Figure 6.5 (e) and (f) in Chapter 6.2.1 we see that the MPC regu-
lator, which is aware of the control input constraints, does a lot better than the
Hsub

∞ regulator which simply truncates its control input. The MPC uses more
control input in the range where it is allowed compared to what it otherwise
would use. The MPC regulator also performs better in this scenario for this
reason. Interestingly though, the H∞ regulator performs better than both the
MPC regulator and the Hsub

∞ regulator. This indicates that good performance
in terms of well damped system dynamics in this scenario is not dependent on
knowledge of the constraints, even though the MPC outperforms the Hsub

∞ be-
cause of it. Fundamentally what is needed is a fast response and more control
input. This is also achieved by the H∞ regulator. However, the H∞ regulator
has access to the line voltage E, which neither the MPC regulator or the Hsub

∞
do.

TheH∞ regulator, which has been plotted in red in Figure 6.5 - 6.10 clearly
outperforms both the Hsub

∞ regulator and the MPC regulator and results in a
more well damped system. This is true for all simulation scenarios which have
been tested in Simulink, even though control input limitations are not part of
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the regulator design. However, the regulator assumes it is possible to measure
the line voltageE. This is the potential of the dc voltage source which feeds the
transmission lines of the train. Measuring that signal is technically not possible
since it is not located on the train. It is however possible to estimate it, but
since the impedance varies depending on how far the train is from the voltage
source it is not certain that the estimate will be good enough. These results
do however show that, if possible, estimating the line voltage reliably could
be very advantageous if utilized in an H∞ regulator design. Alternatively,
if one does not have the signal E available and more damping is desired in
constrained scenarios, one could switch to a differently designed regulator in
those circumstances; one which uses more power modification. That way well
damped system dynamics is achieved in constrained scenarios, while avoiding
using too much power modification in unconstrained scenarios, when it is not
needed.

Lastly, in Chapter 6.3, we presented results relating to the robustness of
the MPC regulator towards modelling errors in the input filter. It was tested
by introducing relative errors in the values of the input filter components; in
this case the resistance R and the inductance L. The impact of errors in the
operating point parameter θ was also tested. We limited our scope to investi-
gating the impact of errors in each parameter on its own. We are aware that
this does not capture the entire parameter error space since it could be the case
that faults are correlated. From Figure 6.11 (a) and (b) we see that the MPC
model is very robust towards errors in the value of the resistance R. The step
response is barely affected by changes which are of a factor 10. Changing the
inductance L in the model gives a change in the natural frequency ω0. As long
as the admittance YDC at the natural frequency ω0 lies close to the positive
real axis the dynamics of the system are not affected too much by variations
in L. We see in Figure 6.11 (c) and (d) that the system dynamics become less
well damped when the inductance L is reduced by a factor 10 in the model,
but the system is still stable. The model is more sensitive to variations in the
operating point parameter θ than it is to variations in the values of the pas-
sive components in the input filter. We see however that introducing relative
errors in θ of a factor 2 still gives a well damped system response. We hence
conclude that the MPC model is robust towards these types of errors. This is
good since we can expect the resistance and the inductance to vary quite a lot
during operation as the train is moving along the transmission lines.

Since the design of the MPC regulator has been done for a CPL connected
to an input filter, the results are applicable to other system which can be mod-
elled as such, and not only train propulsion systems. As was stated in Chapter
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1.3, the stability problem which has been dealt with in this thesis exists in
many other systems which include power converters. We therefore hope that
these results may be of use in areas beyond those of propulsion systems.

8.2 MPC in the SIL Simulator
From the SIL simulations we can gain understanding of how the MPC regu-
lator behaves when used on a model of a train propulsion system; we are no
longer simulating an ideal CPL. In Figure 7.1 in Chapter 7.1.1 we presented
a comparison between the system response as simulated for an ideal CPL and
for the extended system model from the SIL simulator. The response was to
a step in line voltage E, when controlled by the MPC regulator. We see that
the response in the SIL simulator corresponds a lot to what we see for an ideal
CPL in Simulink. It is however slightly less damped in the SIL simulator when
all regulator parameters are the same. This can be attributed to the non-ideal
CPL dynamics of the SIL model. Furthermore, there is a mismatch between
desired power modification, as computed by the regulator, and realized power
modification. This is a result of power losses which are modelled in the SIL
simulator, but unaccounted for the the MPC model. This is another cause for
the deviation between the ideal Simulink environment and what we see in the
SIL simulations. To minimize these deviations, it is important that the regu-
lator design is robust.

One thing which we saw affected the robustness of the MPC regulator was
the choice of weights in the cost function. If we look at Figure 7.5 in from
Chapter 7.1.4 we see how a larger weight on the input filter voltage Ud gives
a more well damped system response. This is especially noticeable in the
system response in the second operating point shown in Figure 7.5 (c) and (d).
In this operating point the torque dynamics of the system are less ideal. With
a larger weight on the input voltage Ud the regulator is more robust towards
these system variations. Hence robustness is closely related to a well damped
system, as might be expected. The cost for the increased robustness is a larger
power modification Pstab.

Another thing which we observe from the SIL simulations is the impor-
tance of the tuning parameter ν, i.e. the cutoff frequency of the operating
point filter. If we look at Figure 7.2 in Chapter 7.1.2 we see that the value
of ν affects the damping of the system dynamics a lot. We also again see the
balance which exists between power modification Pstab and well damped in-
put voltage Ud. Choosing ν too small will result in a very slow settling of
the power modification. This is bad for reference following since it limits the
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bandwidth available for control substantially. If ν instead is chosen to be too
close to the natural frequency ω0 the dynamics become less damped and can
even become unstable if ν is too large. This is what was discussed in Chapter
4.3.2, and we see it in practice in Chapter 7.1.2.

We also evaluated the current estimator which was designed in Chapter
4.2. In Chapter 7.1.3 we presented the results which evaluate the estimator.
We see from Figure 7.3 that the estimated current is quite noisy compared to
the measured signal. This is a result of the way a derivative in the estimator
has been approximated using finite difference. This method is sensitive to dis-
turbances. The estimator filters the finite difference derivative, but the output
is still noisy because the cut-off frequency of the filter was chosen relatively
high. This was done to minimize the amount of phase shift introduced by the
filter. In the end, as can be seen from the step response in Figure 7.4, the noise
in the estimation does not affect the performance. As previously explained,
all the inputs to the MPC are low pass filtered to avoid aliasing. This removes
most of the noise from the estimated current. If, however, one should use this
estimator in a situation where the output is not filtered before use we suggest
that the derivative part of the current is filtered much harder. One such sce-
nario could be implementation of MPC, running at a faster sampling frequency
than what we used here.

Lastly, in Chapter 7.1.5 we presented the simulated response to steps in
power reference for the SIL system model, regulated by the MPC. These re-
sponses are shown in Figure 7.6. The response in input voltage Ud and power
modification Pstab is shown for the diverse operating conditions of full trac-
tion, coasting, and full brake. We hence see that even though designed specif-
ically for stabilization and damping in traction, where the system is unstable,
the MPC regulator works as intended and dampens the system response in
stable conditions as well. Recall that the undampended system response in
stable conditions can still be very oscillatory (see Figure 2.3). This has been
achieved using the LPV model, which changes the state space matrices in the
MPC problem depending on what the operating point is.

The way the MPC regulator has been tuned, it uses a lot more power mod-
ification, Pstab, than the H∞- and Hsub

∞ -regulators in coasting and braking. As
is, the MPC uses constant weights and hence puts the same cost on control
input use in stable situations. It could be advantageous to let the weights vary
with the operating point parameter θ as well. By increasing the cost on the con-
trol input for values of θ where the system is stable, the MPC regulator would
likely produce a well damped system response but use less power modification
when less is needed.
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In the performance specifications we have emphasized the importance of
robustness towards modelling errors. One reason why we have done this is
because we are aware of the fact that we are neglecting system dynamics, and
therefore need that our regulator is robust towards any dynamics which we ig-
nore. The main reason why this has been done is so that we can utilize the
power of having a simple model. The second-order model which we use is
relatively easy to grasp, and as previously mentioned, the resulting MPC reg-
ulator has few tuning parameters. These are advantages when one wants to
understand and control a complex system such as a train propulsion system.
In a way it is interesting that such a complicated system as a train propulsion
system can be modelled in a useful way with such a simple model. An al-
ternative approach, however, would be to try to model some of the dynamics
which are neglected in the simple model and cause the system to differ from
the ideal CPL. That way the regulator does not need to be as robust, since
there is less uncertainty. It would also mean that the regulator could be tuned
more towards speed or minimization of control input use. MPC is also quite
easy to combine together with more advanced system models since it uses the
discrete-time state space system model directly. Once there is a good system
model, implementation of the MPC is sort of ”plug-and-play”. Obtaining a
good model can be quite difficult however. Another problem with a more ad-
vanced model is that it of course will increase the complexity of the MPC
optimization problem, making it harder to solve in real time. Real-time im-
plementation aspects are something which we will discuss more in the next
subsection.

8.3 Real-Time Implementation
The real-time implementation results from Chapter 7 show that the MPC reg-
ulator is a feasible alternative for stabilization of the propulsion system in a
train application. It was possible to integrate it into existing Bombardier soft-
ware and run it on application specific hardware. The MPC optimizer ran on
a task level of 5 ms and the results from Chapter 7.4 shows that the execution
time of the MPC optimizer was at most about one fifth of the sampling period.
The MPC regulator adds a substantial amount of time to the total execution
time but leaves plenty of time to spare.

As mentioned in Chapter 5.2.2 there is a disadvantage to running the MPC
regulator on such a slow task as 200 Hz, since it lowers the bandwidth of the
regulator. If the system which is to be controlled has a high resonance fre-
quency with respect to the available regulator bandwidth, this poses a design
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challenge. This was the case for the MCX application which was used for
the real-time evaluation of the MPC regulator. It would therefore be advanta-
geous from a control perspective to let the MPC operate at a higher sampling
frequency. However, as mentioned in Chapter 5.2.2, increasing the sampling
frequency increases the complexity of the MPC optimization problem (since
the number of prediction samples has to be increased in order for the prediction
horizon to cover the same length of time) while also decreasing the available
computational time. A similar problem would appear if we would want to
stabilize a system which has an input filter with a very low natural frequency.
With a low natural frequency, a long prediction horizon, with a large number of
time steps, is needed in order for the MPC optimizer to capture enough of the
evolution of the system dynamics in the prediction. This will in turn increase
the computational complexity. For a system with a lower natural frequency,
it might however be possible to lower the sampling frequency, and in turn the
regulator bandwidth, without too much of an impact on performance. In the
end we see that the conflict between bandwidth and execution speed poses a
problem. There are however ways around this problem, which have been out
of the scope of this thesis. For example, it is possible let the prediction horizon
be different from the control horizon. That way we optimize over a short time
horizon, which can be done fast, while still checking that the found solution
results in a ”good” predicted future.

Some execution time can be gained by tuning the different solver parame-
ters which were discussed in Chapter 2.9.2. In Chapter 7.1 we experimented
with the duality gap tolerance and saw some improvement. However, increas-
ing the sampling frequency of the MPC regulator for our particular problem
would probably require different hardware, or a modification of the way the
MPC regulator is implemented. For example, one could try explicit MPC,
which was discussed in Chapter 2.9.3. With explicit MPC most of the com-
putation is done offline and the online computation can be reduced to a binary
search, which can be done very fast. Explicit MPC, however, has the problem
that the explicit MPC solution has to be stored. With a system like the one
which has been considered in this thesis, where a linear model is parameter-
ized in terms of the operating point, the explicit solution would be different for
each operating point. Storing the solution for a wide range of operating points
in this manner could easily require a lot of disk memory. On the other hand,
the online MPC optimization already requires quite a bit of disk memory. As
presented in Chapter 7.5, adding the MPC regulator into Bombardier’s con-
verter control source code increased the file size by around 18 %. The way
the optimization algorithm was written, memory use was not taken into ac-
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count. If that was done, the size of the program could probably be reduced
substantially.



Chapter 9

Conclusion

In this chapter we summarize the main findings of the thesis. Then we make
an outlook and propose some future work.

9.1 Summary
In this thesis we have designed an LPV-MPC regulator and shown that it is a
viable option for stabilizing a CPL connected to a power source via an input
filter. The closed loop dynamics, under MPC, can be tuned to reach a quality
similar to what can be achieved with classical frequency domain optimiza-
tion methods, such as H∞ control. The solution the MPC gives results in a
well damped system, with limited control use. It is also robust towards mod-
elling errors. It hence fulfills the performance specifications which were set
up. These performance specifications were that the regulator should

1. give well damped system dynamics

2. limit interference with the overall control objective of following the
power reference

3. be robust towards modelling errors

Explicit handling of control constraints makes the MPC regulator perform bet-
ter than the Hsub

∞ regulator (which has been used as a benchmark), in situations
where the control input is constrained, such as when we are operating close
to motor current limits and the control input is limited to only negative in-
put signals. However, these improvements are minor. We can learn from the
behavior which the MPC exhibits in these situations to improve existing regu-
lator designs. For example, the damping of the Hsub

∞ regulator could be made
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dependent on the control constraints. This could improve the system dynamics
in those situations.

In this thesis we have also shown that it is feasible to implement MPC in ex-
isting Bombardier control software and hardware and run online LPV-MPC in
real-time. The results are useful for understanding the demands which online
MPC puts on modern propulsion control hardware, should industry adapta-
tion of this control method be desirable. Hence the goals which were set up in
Chapter 1.5 have been accomplished.

9.2 Future Work
We suggest the following future investigations on the topic of MPC and con-
verter stabilization.

The system model which has been considered for stabilization controller
design in this thesis is that of the CPL coupled with an input filter. Although
this model works well in practice for many converter applications, there are
important dynamics which are neglected with this simplification. The impact
of that was seen in simulations with the MCX train applications, which had
dynamics around its natural frequency which deviated a lot from that of a
CPL. It would therefore be interesting to investigate the performance of the
MPC regulator, would the system model be extended to include some of these
dynamics. Would the performance improve, and if so by how much? The
real-time implementation details of such a regulator would also be interesting
to investigate.

In MATLAB/Simulink simulations we have seen that the H∞-regulator
outperformed both the MPC- and the Hsub

∞ -regulator in all test cases. The H∞-
regulator differs from the other two in that it requires the line voltage E. This
signal, which corresponds to the voltage of dc voltage source which powers the
train, cannot be measured directly since it is not located on the train. It would
however be interesting to investigate if it is possible to realize a version of the
H∞ regulator which estimates the line voltage E. It would be interesting to
know how reliable of an estimate it is possible to get of the line voltage, or if
the input voltage to the train will work well enough. Furthermore, it would be
useful to know how close to the ideal MATLAB/Simulink results it is possible
to get in a real implementation.

In this thesis we have demonstrated the computational limits which exist
with online MPC. In a converter application, where computational speed is
important, this becomes a big design challenge when it comes to real-time im-
plementation of the MPC regulator. It would therefore be interesting to investi-
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gate the implementation of explicit MPC for stabilization of a train propulsion
system, to see what the potential advantages or disadvantages would be. For
example, how much would an explicit MPC solution gain in terms of compu-
tational speed? And in return, what would it cost in terms of memory? The
practical aspects of efficiently storing the explicit solution for a wide range of
operating points would also be interesting to look at.

In this thesis we have investigated the use of online MPC for stabiliza-
tion of a converter application which has constraints on the control input. Our
last proposal for future work is therefore an investigation into the use of on-
line MPC for stabilization of converter applications which instead have output
constraints. Such constraints could for example be related to the quality of the
output voltage of the converter. What would the advantages of MPC in such
an application be, and what are the design challenges?
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Appendix A

Mathematical Definitions

A.1 Singular Value Decomposition
Any complex n ×m matrix A can be factorized using the singular value de-
composition (SVD)

A = UΣV H (A.1)
where the n× n matrix U and the m×m matrix V are unitary, meaning that
they fulfill

UH = U−1 (A.2)
A unitary matrix has eigenvalues (and singular values) with absolute value
equal to one. The n × m matrix Σ is a matrix which contains a diagonal
matrix σ1 with singular values σi which are real and non-negative. The matrix
Σ is arranged with the the singular values in descending order according to

Σ =

[
Σ1

0

]
, n ≥ m (A.3)

or
Σ =

[
Σ1 0

]
, m ≤ m (A.4)

where
Σ1 = diag(σ1, σ2, · · · , σl), l = min(n,m) (A.5)

and
σ = σ1 ≥ σ2 · · · ≥ σl = σ (A.6)

The columns of U and V form orthonormal basis vectors for the columns and
the rows of A. The singular values σi are related to the eigenvalues of AHA

and AAH through

σi =
√

λi(AHA) =
√

λi(AAH) = (A.7)
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where λi is the ith largest eigenvalue of either AHA or AAH .

A.2 Separation Principle
Here follows a proof of the separation principle. Consider a deterministic LTI
system on state space form

ẋ = Ax+Bu

y = Cx
(A.8)

where x is the state, u is the input signal and y is the output signal. We can
design a state feedback

u = −Lx (A.9)
such that the closed loop dynamics are

ẋ = (A−BL)x (A.10)

If L is chosen such that the eigenvalues of (A−BL) are in the LHP the system
is stable.

Suppose that the system isn’t fully deterministic. Maybe we cannot mea-
sure all the states, or there might be measurement noise or process noise. Let
x̂ be the estimate of x, and let the new feedback law be

u = −Lx̂ (A.11)

We can then design an observer on the form
˙̂x = Ax̂+Bu+K(y − Cx̂) (A.12)

If we define the error signal as

e = x− x̂ (A.13)

then

ė =(A−KC)e (A.14)
u =− L(x− e) (A.15)

Furthermore, we can write the equations for the closed loop system as[
ẋ

ė

]
=

[
(A−BL) BL

0 (A−KC)

] [
x

e

]
(A.16)

Since the matrix is triangular, the eigenvalues of the system is equal to the
eigenvalues of the diagonal elements, i.e (A − BL) and (A − KC). This
means that the stability is decoupled and that the observer and the feedback
can be designed independently.
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A.3 Relating Discrete-Time LQR to MPC
Let

J(x0) = inf
u0,u1,···

∞∑
k=0

x>
k Qxk + u>

k Ruk (A.17)

be the discrete-time infinite-horizon cost-to-go from x0. We can rewrite it into
an equivalent finite-horizon cost function in the following way

J(x0) = inf
u0,··· ,uN−1

N−1∑
k=0

x>
k Qxk + u>

k Ruk + inf
uN ,uN+1,···

N−1∑
k=N

x>
k Qxk + u>

k Ruk︸ ︷︷ ︸
∞-horizon cost from state xN

= inf
u0,··· ,uN−1

N−1∑
k=0

x>
k Qxk + u>

k Ruk + x>
NPxN

(A.18)
where P is the solution to the discrete-time algebraic Riccati equation

P = A>PA− A>PB(R +B>PB)−1B>PA+Q (A.19)

By setting Qf = P in the MPC cost function (2.70) we will hence get a ter-
minal penalty which reflects the future cost-to-go.

A.4 Definition of Matrices in Compact QP For-
mulation

In this appendix we give the definition to the matrices in (2.75), which is a
compact version of the general QP

minimize
N−1∑
i=0

([
x>
i u>

i

] [ Q S

S> R

] [
xi

ui

])
+ x>

NQfxN

subject to xi+1 = Axi +Bui i = 0, 1, · · · , N − 1

Fxxi + Fuui ≤ f i = 0, 1, · · · , N − 1

FfxN ≤ ff , x0 = xk

(A.20)
of which (2.7) is a subset. We repeat the compact QP here

minimize z>Hz

subject to Pz ≤ h, Cz = b
(A.21)
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In (A.20) Fx, Fu and f describe the set of linear inequalities constraining xi

and ui. Ff and ff describe a separate set of inequalities which only applies to
xN . The definition of the matrices of (A.21) are

H =



R 0 0 · · · 0 0 0

0 Q S · · · 0 0 0

0 S> R · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · Q S 0

0 0 0 · · · S> R 0

0 0 0 · · · 0 0 Qf



P =


Fu 0 0 · · · 0 0 0

0 Fx Fu · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · Fx Fu 0

0 0 0 · · · 0 0 Ff



C =



−B I 0 0 · · · 0 0 0

0 −A −B 0 · · · 0 0 0

0 0 0 −A · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · I 0 0

0 0 0 0 · · · −A −B I



h =


f − Fxx0

f
...
f

ff



b =


Ax0

0
...
0
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